메뉴 건너뛰기




Volumn 5, Issue 2, 2015, Pages 157-166

Generalized regression and feed-forward back propagation neural networks in modelling porosity from geophysical well logs

Author keywords

Computational geophysics; Generalized regression neural network Feed forward back propagation; Geophysical well logs; Porosity prediction; Reservoir evaluation; Reservoir properties

Indexed keywords

BACKPROPAGATION; DATA FLOW ANALYSIS; FEEDFORWARD NEURAL NETWORKS; FORECASTING; GASOLINE; GEOPHYSICS; OIL FIELDS; PETROLEUM GEOLOGY; PETROLEUM INDUSTRY; PETROLEUM PROSPECTING; PETROLEUM RESERVOIR EVALUATION; POROSITY; WELL LOGGING;

EID: 84946826295     PISSN: 21900558     EISSN: 21900566     Source Type: Journal    
DOI: 10.1007/s13202-014-0137-7     Document Type: Article
Times cited : (46)

References (18)
  • 3
    • 33745813161 scopus 로고    scopus 로고
    • Application of radial basis function and generalized regression neural networks in non-linear utility function specification for travel mode choice modelling
    • Celikoglu HB (2006) Application of radial basis function and generalized regression neural networks in non-linear utility function specification for travel mode choice modelling. Math Comput Model 44:640-658
    • (2006) Math Comput Model , vol.44 , pp. 640-658
    • Celikoglu, H.B.1
  • 4
    • 27544493548 scopus 로고    scopus 로고
    • Generalized regression neural network in modelling river sediment yield
    • Cigizoglua HK, Alp M (2006) Generalized regression neural network in modelling river sediment yield. Adv Eng Softw 37:63-68
    • (2006) Adv Eng Softw , vol.37 , pp. 63-68
    • Cigizoglua, H.K.1    Alp, M.2
  • 5
    • 0028543366 scopus 로고
    • Training feed forward techniques with the Marquardt algorithm
    • Hagan MT, Menhaj MB (1994) Training feed forward techniques with the Marquardt algorithm. IEEE Trans Neural Netw 5(6):989-993
    • (1994) IEEE Trans Neural Netw , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 6
    • 0027333818 scopus 로고
    • Challenges in reservoir characterization
    • Haldorsen HH, Damsleth E (1993) Challenges in reservoir characterization. AAPG Bull 77:541-551
    • (1993) AAPG Bull , vol.77 , pp. 541-551
    • Haldorsen, H.H.1    Damsleth, E.2
  • 7
    • 84946840545 scopus 로고    scopus 로고
    • Prediction of reservoir permeability from wire logs data using artificial neural networks
    • Handhel AM (2009) Prediction of reservoir permeability from wire logs data using artificial neural networks. Iraqi J Sci 50(1):67-74
    • (2009) Iraqi J Sci , vol.50 , Issue.1 , pp. 67-74
    • Handhel, A.M.1
  • 10
    • 0024880831 scopus 로고
    • Multilayer feed forward networks are universal approximators
    • Hornik K, Stinchcombe MB, White H (1989) Multilayer feed forward networks are universal approximators. Neural Netw 2(5):359-366
    • (1989) Neural Netw , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.B.2    White, H.3
  • 11
    • 0030415277 scopus 로고    scopus 로고
    • Petroleum reservoir characterization with the aid of artificial neural networks
    • Mohaghegh S, Arefi R, Ameri S, Aminian K, Nutter R (1996) Petroleum reservoir characterization with the aid of artificial neural networks. J Petrol Sci Eng 16(4):263-274
    • (1996) J Petrol Sci Eng , vol.16 , Issue.4 , pp. 263-274
    • Mohaghegh, S.1    Arefi, R.2    Ameri, S.3    Aminian, K.4    Nutter, R.5
  • 12
    • 0036564915 scopus 로고    scopus 로고
    • Neural networks as an intelligence amplification tool: A review of applications
    • Poulton MM (2002) Neural networks as an intelligence amplification tool: a review of applications. Geophysics 67(3):979-993
    • (2002) Geophysics , vol.67 , Issue.3 , pp. 979-993
    • Poulton, M.M.1
  • 13
    • 0026254768 scopus 로고
    • A general regression neural network
    • Specht DF (1991) A general regression neural network. IEEE Trans Neural Netw 2(6):568-576
    • (1991) IEEE Trans Neural Netw , vol.2 , Issue.6 , pp. 568-576
    • Specht, D.F.1
  • 14
    • 44449122355 scopus 로고    scopus 로고
    • Nelson Development and comparaison of backpropagation and generalized neural network models to predict diurnal and seasonal gas and PM10 concentrations and emissions from buildings
    • Sun G, Hoff SJ, Zelle BC, Nelson MA (2008) Nelson Development and comparaison of backpropagation and generalized neural network models to predict diurnal and seasonal gas and PM10 concentrations and emissions from buildings. Trans ASABE 51(2):685-694
    • (2008) Trans ASABE , vol.51 , Issue.2 , pp. 685-694
    • Sun, G.1    Hoff, S.J.2    Zelle, B.C.3    Nelson, M.A.4
  • 15
    • 0034233231 scopus 로고
    • Neural networks in geophysical applications
    • Van der Baan M, Jutten C (1992) Neural networks in geophysical applications. Geophysics 65(4):1032-1047
    • (1992) Geophysics , vol.65 , Issue.4 , pp. 1032-1047
    • Van der Baan, M.1    Jutten, C.2
  • 17
    • 0029339808 scopus 로고
    • An improved technique in porosity prediction: A neural network approach
    • Wong PM, Gedeon TD, Taggart J (1995) An improved technique in porosity prediction: a neural network approach. IEEE-TGRS 33(4):971-980
    • (1995) IEEE-TGRS , vol.33 , Issue.4 , pp. 971-980
    • Wong, P.M.1    Gedeon, T.D.2    Taggart, J.3
  • 18
    • 0036196539 scopus 로고    scopus 로고
    • Reservoir parameters estimation from well log and core data: A case study from the North Sea
    • Yan J (2002) Reservoir parameters estimation from well log and core data: a case study from the North Sea. Pet Geosci 8:63-69
    • (2002) Pet Geosci , vol.8 , pp. 63-69
    • Yan, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.