-
1
-
-
38349104540
-
Healthy aims: Developing new medical implants and diagnostic equipment
-
Hodgins, D. et al. Healthy aims: developing new medical implants and diagnostic equipment. IEEE Pervasive Comput. 7, 14-21 (2008).
-
(2008)
IEEE Pervasive Comput.
, vol.7
, pp. 14-21
-
-
Hodgins, D.1
-
2
-
-
34548827377
-
Designing efficient inductive power links for implantable devices
-
Harrison, R. R. Designing efficient inductive power links for implantable devices. IEEE Int. Symp. Circuits Syst (ISCAS). 2028-2083 (2007), doi: 10.1109/ISCAS.2007.378508.
-
(2007)
IEEE Int. Symp. Circuits Syst (ISCAS)
, pp. 2028-2083
-
-
Harrison, R.R.1
-
3
-
-
78349291202
-
A study on the inductive power links for implantable biomedical devices
-
Jegadeesan, R. & Guo, Y. X. A study on the inductive power links for implantable biomedical devices. IEEE Antennas Propag. Soc. Int. Symp (APSURSI). 1-4 (2010), doi: 10.1109/APS.2010.5562122.
-
(2010)
IEEE Antennas Propag. Soc. Int. Symp (APSURSI)
, pp. 1-4
-
-
Jegadeesan, R.1
Guo, Y.X.2
-
4
-
-
84867352644
-
Topology selection and efficiency improvement of inductive power links
-
Jegadeesan, R. & Guo, Y. X. Topology selection and efficiency improvement of inductive power links. IEEE Trans. Antennas Propag. 60, 4846-4854 (2012).
-
(2012)
IEEE Trans. Antennas Propag.
, vol.60
, pp. 4846-4854
-
-
Jegadeesan, R.1
Guo, Y.X.2
-
5
-
-
65249165597
-
Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator
-
Yang, R., Qin, Y., Li, C., Zhu, G. & Wang, Z. L. Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator. Nano Lett. 9, 1201-1205 (2009).
-
(2009)
Nano Lett.
, vol.9
, pp. 1201-1205
-
-
Yang, R.1
Qin, Y.2
Li, C.3
Zhu, G.4
Wang, Z.L.5
-
6
-
-
84883343779
-
Fabrication of a ZnOnanogenerator for eco-friendly biomechanical energy harvesting
-
Saravanakumar, B., Mohan, R., Thiyagarajan, K. & Kim, S. J. Fabrication of a ZnOnanogenerator for eco-friendly biomechanical energy harvesting. RSC Adv. 3, 16646-16656 (2013).
-
(2013)
RSC Adv.
, vol.3
, pp. 16646-16656
-
-
Saravanakumar, B.1
Mohan, R.2
Thiyagarajan, K.3
Kim, S.J.4
-
7
-
-
84899876178
-
Growth of 2D ZnO nanowall for energy harvesting application
-
Saravanakumar, B. & Kim, S. J. Growth of 2D ZnO nanowall for energy harvesting application. J. Phys. Chem. C 118, 8831-8836 (2014).
-
(2014)
J. Phys. Chem. C
, vol.118
, pp. 8831-8836
-
-
Saravanakumar, B.1
Kim, S.J.2
-
8
-
-
84890368493
-
Biotemplated synthesis of PZT nanowires
-
Cung, K. et al. Biotemplated synthesis of PZT nanowires. Nano Lett. 13, 6197-6202 (2013).
-
(2013)
Nano Lett.
, vol.13
, pp. 6197-6202
-
-
Cung, K.1
-
9
-
-
84886998303
-
R-shaped hybrid nanogenerator with enhanced piezoelectricity
-
Han, M. et al. r-Shaped hybrid nanogenerator with enhanced piezoelectricity. ACS Nano 7, 8554-8560 (2013).
-
(2013)
ACS Nano
, vol.7
, pp. 8554-8560
-
-
Han, M.1
-
10
-
-
84887368993
-
Fabrication of an ultra-flexible ZnO nanogenerator for harvesting energy from respiration
-
Lin, H. I., Wuu, D. S., Shen, K. C. & Horng, R. H. Fabrication of an ultra-flexible ZnO nanogenerator for harvesting energy from respiration. ECS J. Solid State Sc. 2, 400-404 (2013).
-
(2013)
ECS J. Solid State Sc.
, vol.2
, pp. 400-404
-
-
Lin, H.I.1
Wuu, D.S.2
Shen, K.C.3
Horng, R.H.4
-
11
-
-
80055029421
-
PVDF microbelts for harvesting energy from respiration
-
Sun, C., Shi, J., Bayerl, D. J. & Wang, X. PVDF microbelts for harvesting energy from respiration. Energy Environ. Sci. 4, 4508-4512 (2011).
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 4508-4512
-
-
Sun, C.1
Shi, J.2
Bayerl, D.J.3
Wang, X.4
-
12
-
-
79955103117
-
Biomechanical energy harvesting from human motion: Theory, state of the art, design guidelines, and future directions
-
Riemer, R. & Shapiro, A. Biomechanical energy harvesting from human motion: theory, state of the art, design guidelines, and future directions. J. Neuroeng. Rehabil. 8, 22 (2011).
-
(2011)
J. Neuroeng. Rehabil.
, vol.8
, pp. 22
-
-
Riemer, R.1
Shapiro, A.2
-
14
-
-
38949118719
-
Biomechanical energy harvesting: Generating electricity during walking with minimal user effort
-
Donelan, J. M. et al. Biomechanical energy harvesting: generating electricity during walking with minimal user effort. Science 319, 807-810 (2008).
-
(2008)
Science
, vol.319
, pp. 807-810
-
-
Donelan, J.M.1
-
15
-
-
8744314747
-
Evaluation of motions and actuation methods for biomechanical energy harvesting
-
Niu, P., Chapman, P., Riemer, R. & Zhang, X. Evaluation of motions and actuation methods for biomechanical energy harvesting. IEEE 35th Annual. Power Electron. Specialists Conf. 3, 2100-2106 (2004).
-
(2004)
IEEE 35th Annual. Power Electron. Specialists Conf.
, vol.3
, pp. 2100-2106
-
-
Niu, P.1
Chapman, P.2
Riemer, R.3
Zhang, X.4
-
16
-
-
84887014365
-
Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system
-
Yang, Y. et al. Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system. ACS Nano 7, 9213-9222 (2013).
-
(2013)
ACS Nano
, vol.7
, pp. 9213-9222
-
-
Yang, Y.1
-
17
-
-
84869407386
-
Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems
-
Wang, Z. L. & Wu, W. Z. Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angew. Chem. Int. Ed. 51, 11700-11721 (2012).
-
(2012)
Angew. Chem. Int. Ed.
, vol.51
, pp. 11700-11721
-
-
Wang, Z.L.1
Wu, W.Z.2
-
18
-
-
84893477161
-
Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm
-
Canan, D. et al. Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Proc. Natl. Acad. Sci. 111, 1927-1932 (2014).
-
(2014)
Proc. Natl. Acad. Sci.
, vol.111
, pp. 1927-1932
-
-
Canan, D.1
-
19
-
-
0036850488
-
Review of state of art of smart structures and integrated systems
-
Chopra, I. Review of state of art of smart structures and integrated systems. AIAA J. 40, 2145-2187 (2002).
-
(2002)
AIAA J.
, vol.40
, pp. 2145-2187
-
-
Chopra, I.1
-
20
-
-
37249021075
-
Competing fracture in kinetically controlled transfer printing
-
Feng, X. et al. Competing fracture in kinetically controlled transfer printing. Langmuir 23, 12555-12560 (2007).
-
(2007)
Langmuir
, vol.23
, pp. 12555-12560
-
-
Feng, X.1
-
21
-
-
30044447991
-
Transfer printing by kinetic control of adhesion to an elastomeric stamp
-
Matthew, A. M. et al. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat. Mater. 5, 33-38 (2006).
-
(2006)
Nat. Mater
, vol.5
, pp. 33-38
-
-
Matthew, A.M.1
-
22
-
-
84879842027
-
Experiments and viscoelastic analysis of peel test with patterned strips for applications to transfer printing
-
Chen, H., Feng, X., Huang, Y., Huang, Y. & Rogers, J. A. Experiments and viscoelastic analysis of peel test with patterned strips for applications to transfer printing. J. Mech. Phys. Solids 61, 1737-1752 (2013).
-
(2013)
J. Mech. Phys. Solids
, vol.61
, pp. 1737-1752
-
-
Chen, H.1
Feng, X.2
Huang, Y.3
Huang, Y.4
Rogers, J.A.5
-
23
-
-
0037014680
-
Interfacial chemistries for nanoscale transfer printing
-
Loo, Y. L., Willett, R. L., Baldwin, K. W. & Rogers, J. A. Interfacial chemistries for nanoscale transfer printing. J. Am. Chem. Soc. 124, 7654-7655 (2002).
-
(2002)
J. Am. Chem. Soc.
, vol.124
, pp. 7654-7655
-
-
Loo, Y.L.1
Willett, R.L.2
Baldwin, K.W.3
Rogers, J.A.4
-
24
-
-
0030340252
-
Behavior of sutures used in anterior cruciate ligament reconstructive surgery
-
Spencer, E. E., Chissell, H. R., Spang, J. T. & Feagin Jr, J. A. Behavior of sutures used in anterior cruciate ligament reconstructive surgery. Knee Surg., Sports Traumatol., Arthrosc. 4, 84-88 (1996).
-
(1996)
Knee Surg., Sports Traumatol., Arthrosc.
, vol.4
, pp. 84-88
-
-
Spencer, E.E.1
Chissell, H.R.2
Spang, J.T.3
Feagin, J.A.4
-
25
-
-
0019405057
-
Left ventricular fibre architecture in man
-
Greenbaum, R. A., Ho, S. Y., Gibson, D. G., Becker, A. E. & Anderson, R. H. Left ventricular fibre architecture in man. Br. Heart J. 45, 248-26 (1981).
-
(1981)
Br. Heart J.
, vol.45
, pp. 248-326
-
-
Greenbaum, R.A.1
Ho, S.Y.2
Gibson, D.G.3
Becker, A.E.4
Anderson, R.H.5
-
26
-
-
0037192118
-
Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association
-
Cerqueira, M. D. et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105, 539-542 (2002).
-
(2002)
Circulation
, vol.105
, pp. 539-542
-
-
Cerqueira, M.D.1
-
27
-
-
0034609533
-
Myocardial strain by Doppler echocardiography: Validation of a new method to quantify regional myocardial function
-
Urheim, S., Edvardsen, T., Torp, H., Angelsen, B. & Smiseth, O. A. Myocardial strain by Doppler echocardiography: validation of a new method to quantify regional myocardial function. Circulation 102, 1158-1164 (2000).
-
(2000)
Circulation
, vol.102
, pp. 1158-1164
-
-
Urheim, S.1
Edvardsen, T.2
Torp, H.3
Angelsen, B.4
Smiseth, O.A.5
-
28
-
-
33750946574
-
Left ventricular structure and function: Basic science for cardiac imaging
-
Sengupta, P. P. et al. Left Ventricular Structure and Function: Basic Science for Cardiac Imaging. J. Am. Coll. Cardiol. 48, 1988-2001 (2006).
-
(2006)
J. Am. Coll. Cardiol.
, vol.48
, pp. 1988-2001
-
-
Sengupta, P.P.1
-
29
-
-
0142241381
-
In vivo strain and stress estimation of the heart left and right ventricles from MRI images
-
Hu, Z., Metaxas, D. & Axel, L. In vivo strain and stress estimation of the heart left and right ventricles from MRI images. Med. Image Anal. 7, 435-444 (2003).
-
(2003)
Med. Image Anal.
, vol.7
, pp. 435-444
-
-
Hu, Z.1
Metaxas, D.2
Axel, L.3
-
30
-
-
0018770935
-
Left ventricular end-systolic pressure-dimension and stresslength relations in normal human subjects
-
Marsh, J. D., Green, L. H., Wynne, J., Cohn, P. F. & Grossman, W. Left ventricular end-systolic pressure-dimension and stresslength relations in normal human subjects. Am. J. Cardiol. 44, 1311-1317 (1979).
-
(1979)
Am. J. Cardiol.
, vol.44
, pp. 1311-1317
-
-
Marsh, J.D.1
Green, L.H.2
Wynne, J.3
Cohn, P.F.4
Grossman, W.5
|