-
1
-
-
0141598129
-
A local existence theorem in the theory of surface waves of finite amplitude
-
K. I. Babenko. A local existence theorem in the theory of surface waves of finite amplitude. Dokl. Akad. Nauk SSSR 294 (1987), 1289-1292.
-
(1987)
Dokl. Akad. Nauk SSSR
, vol.294
, pp. 1289-1292
-
-
Babenko, K.I.1
-
2
-
-
0000507802
-
Some remarks on the theory of surface waves of finite amplitude
-
K. I. Babenko. Some remarks on the theory of surface waves of finite amplitude. Sov. Math. Dokl. 35 (1987), 599-603.
-
(1987)
Sov. Math. Dokl.
, vol.35
, pp. 599-603
-
-
Babenko, K.I.1
-
4
-
-
0021201971
-
Impulse, flow-force and variational principles
-
T. B. Benjamin. Impulse, flow-force and variational principles. IMA J. Appl. Math. 32 (1984), 3-68.
-
(1984)
IMA J. Appl. Math.
, vol.32
, pp. 3-68
-
-
Benjamin, T.B.1
-
5
-
-
3142676320
-
Existence and conditional energetic stability of capillary-gravity solitary water waves by minimisation
-
B. Buffoni. Existence and conditional energetic stability of capillary-gravity solitary water waves by minimisation. Arch. Ration. Mech. Analysis 173 (2004), 25-68.
-
(2004)
Arch. Ration. Mech. Analysis
, vol.173
, pp. 25-68
-
-
Buffoni, B.1
-
6
-
-
33947385263
-
Conditional energetic stability of gravity solitary waves in the presence of weak surface tension
-
B. Buffoni. Conditional energetic stability of gravity solitary waves in the presence of weak surface tension. Topolog. Meth. Nonlin. Analysis 25 (2005), 41-68.
-
(2005)
Topolog. Meth. Nonlin. Analysis
, vol.25
, pp. 41-68
-
-
Buffoni, B.1
-
7
-
-
77949653694
-
Gravity solitary waves by minimization: An uncountable family
-
B. Buffoni. Gravity solitary waves by minimization: an uncountable family. Topolog. Meth. Nonlin. Analysis 34 (2009), 339-352.
-
(2009)
Topolog. Meth. Nonlin. Analysis
, vol.34
, pp. 339-352
-
-
Buffoni, B.1
-
9
-
-
84870372052
-
Existence and conditional energetic stability of three-dimensional fully localised solitary gravity-capillary water waves
-
B. Buffoni, M. D. Groves, S. M. Sun and E. Wahlén. Existence and conditional energetic stability of three-dimensional fully localised solitary gravity-capillary water waves. J. Diff. Eqns 254 (2013), 1006-1096.
-
(2013)
J. Diff. Eqns
, vol.254
, pp. 1006-1096
-
-
Buffoni, B.1
Groves, M.D.2
Sun, S.M.3
Wahlén, E.4
-
11
-
-
0000090159
-
Orbital stability of standing waves for some nonlinear Schrödinger equations
-
T. Cazenave and P. L. Lions. Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85 (1982), 549-561.
-
(1982)
Commun. Math. Phys.
, vol.85
, pp. 549-561
-
-
Cazenave, T.1
Lions, P.L.2
-
12
-
-
83755173108
-
Nonlinear water waves with applications to wave-current interactions and tsunamis
-
Philadelphia, PA: SIAM
-
A. Constantin. Nonlinear water waves with applications to wave-current interactions and tsunamis. CMBS-NSF Regional Conference Series in Applied Mathematics, vol. 81 (Philadelphia, PA: SIAM, 2011).
-
(2011)
CMBS-NSF Regional Conference Series in Applied Mathematics
, vol.81
-
-
Constantin, A.1
-
13
-
-
78650997048
-
Steady periodic water waves with constant vorticity: Regularity and local bifurcation
-
A. Constantin and E. Varvaruca. Steady periodic water waves with constant vorticity: regularity and local bifurcation. Arch. Ration. Mech. Analysis 199 (2011), 33-67.
-
(2011)
Arch. Ration. Mech. Analysis
, vol.199
, pp. 33-67
-
-
Constantin, A.1
Varvaruca, E.2
-
14
-
-
44949249867
-
Nearly-Hamiltonian structure for water waves with constant vorticity
-
A. Constantin, R. I. Ivanov and E. M. Prodanov. Nearly-Hamiltonian structure for water waves with constant vorticity. J. Math. Fluid Mech. 10 (2008), 224-237.
-
(2008)
J. Math. Fluid Mech.
, vol.10
, pp. 224-237
-
-
Constantin, A.1
Ivanov, R.I.2
Prodanov, E.M.3
-
15
-
-
0033489572
-
Nonlinear gravity and capillary-gravity waves
-
F. Dias and C. Kharif. Nonlinear gravity and capillary-gravity waves. A. Rev. Fluid Mech. 31 (1999), 301-346.
-
(1999)
A. Rev. Fluid Mech.
, vol.31
, pp. 301-346
-
-
Dias, F.1
Kharif, C.2
-
16
-
-
44649159515
-
Spatial dynamics methods for solitary gravity-capillary water waves with an arbitrary distribution of vorticity
-
M. D. Groves and E. Wahlén. Spatial dynamics methods for solitary gravity-capillary water waves with an arbitrary distribution of vorticity. SIAM J. Math. Analysis 39 (2007), 932-964.
-
(2007)
SIAM J. Math. Analysis
, vol.39
, pp. 932-964
-
-
Groves, M.D.1
Wahlén, E.2
-
17
-
-
77949653202
-
On the existence and conditional energetic stability of solitary water waves with weak surface tension
-
M. D. Groves and E. Wahlén. On the existence and conditional energetic stability of solitary water waves with weak surface tension. C. R. Math. 348 (2010), 397-402.
-
(2010)
C. R. Math.
, vol.348
, pp. 397-402
-
-
Groves, M.D.1
Wahlén, E.2
-
19
-
-
84870432652
-
A problem in the classical theory of water waves: Weakly nonlinear waves in the presence of vorticity
-
R. S. Johnson. A problem in the classical theory of water waves: weakly nonlinear waves in the presence of vorticity. J. Nonlin. Math. Phys. 19 (2012), 1240012.
-
(2012)
J. Nonlin. Math. Phys.
, vol.19
-
-
Johnson, R.S.1
-
21
-
-
85030707196
-
The concentration-compactness principle in the calculus of variations. The locally compact case, part 1
-
P. L. Lions. The concentration-compactness principle in the calculus of variations. The locally compact case, part 1. Annales Inst. H. Poincaré Analyse Non Linéaire 1 (1984), 109-145.
-
(1984)
Annales Inst. H. Poincaré Analyse Non Linéaire
, vol.1
, pp. 109-145
-
-
Lions, P.L.1
-
22
-
-
85030719142
-
The concentration-compactness principle in the calculus of variations. The locally compact case, part 2
-
P. L. Lions. The concentration-compactness principle in the calculus of variations. The locally compact case, part 2. Annales Inst. H. Poincaré Analyse Non Linéaire 1 (1984), 223-283.
-
(1984)
Annales Inst. H. Poincaré Analyse Non Linéaire
, vol.1
, pp. 223-283
-
-
Lions, P.L.1
-
23
-
-
84874026053
-
Local bifurcation for steady periodic capillary water waves with constant vorticity
-
C. I. Martin. Local bifurcation for steady periodic capillary water waves with constant vorticity. J. Math. Fluid Mech. 15 (2013), 155-170.
-
(2013)
J. Math. Fluid Mech.
, vol.15
, pp. 155-170
-
-
Martin, C.I.1
-
24
-
-
0037107586
-
On the energetic stability of solitary water waves
-
A. Mielke. On the energetic stability of solitary water waves. Phil. Trans. R. Soc. Lond. A 360 (2002), 2337-2358.
-
(2002)
Phil. Trans. R. Soc. Lond. A
, vol.360
, pp. 2337-2358
-
-
Mielke, A.1
-
25
-
-
33947385856
-
A Hamiltonian formulation of water waves with constant vorticity
-
E. Wahlén. A Hamiltonian formulation of water waves with constant vorticity. Lett. Math. Phys. 79 (2007), 303-315.
-
(2007)
Lett. Math. Phys.
, vol.79
, pp. 303-315
-
-
Wahlén, E.1
-
26
-
-
34250447917
-
Stability of periodic waves of finite amplitude on the surface of a deep fluid
-
V. E. Zakharov. Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9 (1968), 190-194.
-
(1968)
J. Appl. Mech. Tech. Phys.
, vol.9
, pp. 190-194
-
-
Zakharov, V.E.1
|