메뉴 건너뛰기




Volumn 145, Issue 4, 2015, Pages 791-883

Existence and conditional energetic stability of solitary gravity-capillary water waves with constant vorticity

Author keywords

calculus of variations; solitary waves; vorticity; water waves

Indexed keywords


EID: 84946185786     PISSN: 03082105     EISSN: 14737124     Source Type: Journal    
DOI: 10.1017/S0308210515000116     Document Type: Article
Times cited : (15)

References (26)
  • 1
    • 0141598129 scopus 로고
    • A local existence theorem in the theory of surface waves of finite amplitude
    • K. I. Babenko. A local existence theorem in the theory of surface waves of finite amplitude. Dokl. Akad. Nauk SSSR 294 (1987), 1289-1292.
    • (1987) Dokl. Akad. Nauk SSSR , vol.294 , pp. 1289-1292
    • Babenko, K.I.1
  • 2
    • 0000507802 scopus 로고
    • Some remarks on the theory of surface waves of finite amplitude
    • K. I. Babenko. Some remarks on the theory of surface waves of finite amplitude. Sov. Math. Dokl. 35 (1987), 599-603.
    • (1987) Sov. Math. Dokl. , vol.35 , pp. 599-603
    • Babenko, K.I.1
  • 4
    • 0021201971 scopus 로고
    • Impulse, flow-force and variational principles
    • T. B. Benjamin. Impulse, flow-force and variational principles. IMA J. Appl. Math. 32 (1984), 3-68.
    • (1984) IMA J. Appl. Math. , vol.32 , pp. 3-68
    • Benjamin, T.B.1
  • 5
    • 3142676320 scopus 로고    scopus 로고
    • Existence and conditional energetic stability of capillary-gravity solitary water waves by minimisation
    • B. Buffoni. Existence and conditional energetic stability of capillary-gravity solitary water waves by minimisation. Arch. Ration. Mech. Analysis 173 (2004), 25-68.
    • (2004) Arch. Ration. Mech. Analysis , vol.173 , pp. 25-68
    • Buffoni, B.1
  • 6
    • 33947385263 scopus 로고    scopus 로고
    • Conditional energetic stability of gravity solitary waves in the presence of weak surface tension
    • B. Buffoni. Conditional energetic stability of gravity solitary waves in the presence of weak surface tension. Topolog. Meth. Nonlin. Analysis 25 (2005), 41-68.
    • (2005) Topolog. Meth. Nonlin. Analysis , vol.25 , pp. 41-68
    • Buffoni, B.1
  • 7
    • 77949653694 scopus 로고    scopus 로고
    • Gravity solitary waves by minimization: An uncountable family
    • B. Buffoni. Gravity solitary waves by minimization: an uncountable family. Topolog. Meth. Nonlin. Analysis 34 (2009), 339-352.
    • (2009) Topolog. Meth. Nonlin. Analysis , vol.34 , pp. 339-352
    • Buffoni, B.1
  • 9
    • 84870372052 scopus 로고    scopus 로고
    • Existence and conditional energetic stability of three-dimensional fully localised solitary gravity-capillary water waves
    • B. Buffoni, M. D. Groves, S. M. Sun and E. Wahlén. Existence and conditional energetic stability of three-dimensional fully localised solitary gravity-capillary water waves. J. Diff. Eqns 254 (2013), 1006-1096.
    • (2013) J. Diff. Eqns , vol.254 , pp. 1006-1096
    • Buffoni, B.1    Groves, M.D.2    Sun, S.M.3    Wahlén, E.4
  • 11
    • 0000090159 scopus 로고
    • Orbital stability of standing waves for some nonlinear Schrödinger equations
    • T. Cazenave and P. L. Lions. Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85 (1982), 549-561.
    • (1982) Commun. Math. Phys. , vol.85 , pp. 549-561
    • Cazenave, T.1    Lions, P.L.2
  • 12
    • 83755173108 scopus 로고    scopus 로고
    • Nonlinear water waves with applications to wave-current interactions and tsunamis
    • Philadelphia, PA: SIAM
    • A. Constantin. Nonlinear water waves with applications to wave-current interactions and tsunamis. CMBS-NSF Regional Conference Series in Applied Mathematics, vol. 81 (Philadelphia, PA: SIAM, 2011).
    • (2011) CMBS-NSF Regional Conference Series in Applied Mathematics , vol.81
    • Constantin, A.1
  • 13
    • 78650997048 scopus 로고    scopus 로고
    • Steady periodic water waves with constant vorticity: Regularity and local bifurcation
    • A. Constantin and E. Varvaruca. Steady periodic water waves with constant vorticity: regularity and local bifurcation. Arch. Ration. Mech. Analysis 199 (2011), 33-67.
    • (2011) Arch. Ration. Mech. Analysis , vol.199 , pp. 33-67
    • Constantin, A.1    Varvaruca, E.2
  • 14
    • 44949249867 scopus 로고    scopus 로고
    • Nearly-Hamiltonian structure for water waves with constant vorticity
    • A. Constantin, R. I. Ivanov and E. M. Prodanov. Nearly-Hamiltonian structure for water waves with constant vorticity. J. Math. Fluid Mech. 10 (2008), 224-237.
    • (2008) J. Math. Fluid Mech. , vol.10 , pp. 224-237
    • Constantin, A.1    Ivanov, R.I.2    Prodanov, E.M.3
  • 15
    • 0033489572 scopus 로고    scopus 로고
    • Nonlinear gravity and capillary-gravity waves
    • F. Dias and C. Kharif. Nonlinear gravity and capillary-gravity waves. A. Rev. Fluid Mech. 31 (1999), 301-346.
    • (1999) A. Rev. Fluid Mech. , vol.31 , pp. 301-346
    • Dias, F.1    Kharif, C.2
  • 16
    • 44649159515 scopus 로고    scopus 로고
    • Spatial dynamics methods for solitary gravity-capillary water waves with an arbitrary distribution of vorticity
    • M. D. Groves and E. Wahlén. Spatial dynamics methods for solitary gravity-capillary water waves with an arbitrary distribution of vorticity. SIAM J. Math. Analysis 39 (2007), 932-964.
    • (2007) SIAM J. Math. Analysis , vol.39 , pp. 932-964
    • Groves, M.D.1    Wahlén, E.2
  • 17
    • 77949653202 scopus 로고    scopus 로고
    • On the existence and conditional energetic stability of solitary water waves with weak surface tension
    • M. D. Groves and E. Wahlén. On the existence and conditional energetic stability of solitary water waves with weak surface tension. C. R. Math. 348 (2010), 397-402.
    • (2010) C. R. Math. , vol.348 , pp. 397-402
    • Groves, M.D.1    Wahlén, E.2
  • 19
    • 84870432652 scopus 로고    scopus 로고
    • A problem in the classical theory of water waves: Weakly nonlinear waves in the presence of vorticity
    • R. S. Johnson. A problem in the classical theory of water waves: weakly nonlinear waves in the presence of vorticity. J. Nonlin. Math. Phys. 19 (2012), 1240012.
    • (2012) J. Nonlin. Math. Phys. , vol.19
    • Johnson, R.S.1
  • 21
    • 85030707196 scopus 로고
    • The concentration-compactness principle in the calculus of variations. The locally compact case, part 1
    • P. L. Lions. The concentration-compactness principle in the calculus of variations. The locally compact case, part 1. Annales Inst. H. Poincaré Analyse Non Linéaire 1 (1984), 109-145.
    • (1984) Annales Inst. H. Poincaré Analyse Non Linéaire , vol.1 , pp. 109-145
    • Lions, P.L.1
  • 22
    • 85030719142 scopus 로고
    • The concentration-compactness principle in the calculus of variations. The locally compact case, part 2
    • P. L. Lions. The concentration-compactness principle in the calculus of variations. The locally compact case, part 2. Annales Inst. H. Poincaré Analyse Non Linéaire 1 (1984), 223-283.
    • (1984) Annales Inst. H. Poincaré Analyse Non Linéaire , vol.1 , pp. 223-283
    • Lions, P.L.1
  • 23
    • 84874026053 scopus 로고    scopus 로고
    • Local bifurcation for steady periodic capillary water waves with constant vorticity
    • C. I. Martin. Local bifurcation for steady periodic capillary water waves with constant vorticity. J. Math. Fluid Mech. 15 (2013), 155-170.
    • (2013) J. Math. Fluid Mech. , vol.15 , pp. 155-170
    • Martin, C.I.1
  • 24
    • 0037107586 scopus 로고    scopus 로고
    • On the energetic stability of solitary water waves
    • A. Mielke. On the energetic stability of solitary water waves. Phil. Trans. R. Soc. Lond. A 360 (2002), 2337-2358.
    • (2002) Phil. Trans. R. Soc. Lond. A , vol.360 , pp. 2337-2358
    • Mielke, A.1
  • 25
    • 33947385856 scopus 로고    scopus 로고
    • A Hamiltonian formulation of water waves with constant vorticity
    • E. Wahlén. A Hamiltonian formulation of water waves with constant vorticity. Lett. Math. Phys. 79 (2007), 303-315.
    • (2007) Lett. Math. Phys. , vol.79 , pp. 303-315
    • Wahlén, E.1
  • 26
    • 34250447917 scopus 로고
    • Stability of periodic waves of finite amplitude on the surface of a deep fluid
    • V. E. Zakharov. Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9 (1968), 190-194.
    • (1968) J. Appl. Mech. Tech. Phys. , vol.9 , pp. 190-194
    • Zakharov, V.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.