메뉴 건너뛰기




Volumn 5, Issue 2, 2013, Pages 122-159

Exponential laws for ultrametric partially differentiable functions and applications

Author keywords

approximation; compactly generated space; density; differentiability; exponential law; finite order; function space; k space; locally polynomial function; metrizability; non archimedean analysis,Mahler expansion; partial differential; polynomial; product; Stone Weierstrass theorem; topological field; ultrametric field; valued field

Indexed keywords


EID: 84946169474     PISSN: 20700466     EISSN: 20700474     Source Type: Journal    
DOI: 10.1134/S2070046613020039     Document Type: Article
Times cited : (5)

References (27)
  • 4
    • 33751227702 scopus 로고
    • The Weierstrass-Stone approximation theorem for p-adic Cn-functions
    • J. Araujo and W. H. Schikhof, “The Weierstrass-Stone approximation theorem for p-adic Cn-functions,” Ann. Math. Blaise Pascal 1, 61–74 (1994).
    • (1994) Ann. Math. Blaise Pascal , vol.1 , pp. 61-74
    • Araujo, J.1    Schikhof, W.H.2
  • 5
    • 3242810561 scopus 로고    scopus 로고
    • Differential calculus over general base fields and rings
    • W. Bertram, H. Glöckner and K.-H. Neeb, “Differential calculus over general base fields and rings,” Expo. Math. 22, 213–282 (2004).
    • (2004) Expo. Math , vol.22 , pp. 213-282
    • Bertram, W.1    Glöckner, H.2    Neeb, K.-H.3
  • 6
    • 0003959738 scopus 로고
    • Addison-Wesley, Reading and Hermann, Paris:
    • N. Bourbaki, General Topology, Part 2 (Addison-Wesley, Reading and Hermann, Paris, 1966).
    • (1966) General Topology, Part 2
    • Bourbaki, N.1
  • 7
    • 33751243811 scopus 로고
    • p-Adic continuously differentiable functions of several variables
    • S. De Smedt, “p-Adic continuously differentiable functions of several variables,” Collect.Math. 45, 137–152 (1994).
    • (1994) Collect.Math , vol.45 , pp. 137-152
    • De Smedt, S.1
  • 11
    • 0036808583 scopus 로고    scopus 로고
    • Lie group structures on quotient groups and universal complexifications for infinitedimensional Lie groups
    • H. Glöckner, “Lie group structures on quotient groups and universal complexifications for infinitedimensional Lie groups,” J. Funct. Anal. 194, 43–59 (2002).
    • (2002) J. Funct. Anal , vol.194 , pp. 43-59
    • Glöckner, H.1
  • 12
    • 39349118089 scopus 로고    scopus 로고
    • k-maps in multi-variable non-archimedian analysis
    • k-maps in multi-variable non-archimedian analysis,” Bull. Belg.Math. Soc. Simon Stevin 14, 877–904 (2007).
    • (2007) Bull. Belg.Math. Soc. Simon Stevin , vol.14 , pp. 877-904
    • Glöckner, H.1
  • 16
    • 77956118264 scopus 로고    scopus 로고
    • Final group topologies, Kac-Moody groups and Pontryagin duality
    • H. Glöckner, R. Gramlich and T. Hartnick, “Final group topologies, Kac-Moody groups and Pontryagin duality,” Israel J. Math. 177, 49–101 (2010).
    • (2010) Israel J. Math , vol.177 , pp. 49-101
    • Glöckner, H.1    Gramlich, R.2    Hartnick, T.3
  • 23
    • 84879052352 scopus 로고    scopus 로고
    • Fractional non-Archimedean calculus in many variables
    • E. Nagel, “Fractional non-Archimedean calculus in many variables,” p-Adic Numbers Ultram. Anal. Appl. 5(1), 22–64 (2013).
    • (2013) P-Adic Numbers Ultram. Anal. Appl , vol.5 , Issue.1 , pp. 22-64
    • Nagel, E.1
  • 24
    • 84946152906 scopus 로고    scopus 로고
    • to appear in Contemp. Mathematics; cf
    • E. Nagel, “Partial fractional differentiability,” to appear in Contemp. Mathematics; cf. http://www.math.jussieu.fr/-nagel/publications/PartialFracDiff.pdf.
    • Partial fractional differentiability
    • Nagel, E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.