메뉴 건너뛰기




Volumn 42, Issue 11, 2015, Pages 6725-6735

Evaluation of tumor-derived MRI-texture features for discrimination of molecular subtypes and prediction of 12-month survival status in glioblastoma

Author keywords

glioblastoma; imaging genomics; molecular subtypes; texture features

Indexed keywords

BRAIN; COMPUTER AIDED DIAGNOSIS; DECISION TREES; FORECASTING; IMAGE SEGMENTATION; LOCAL BINARY PATTERN; MAGNETIC RESONANCE IMAGING; MEDICAL COMPUTING; NONINVASIVE MEDICAL PROCEDURES; PATIENT REHABILITATION; TUMORS;

EID: 84946141733     PISSN: 00942405     EISSN: 24734209     Source Type: Journal    
DOI: 10.1118/1.4934373     Document Type: Article
Times cited : (131)

References (49)
  • 5
    • 33745712924 scopus 로고    scopus 로고
    • Developing patterns
    • E. Hutchinson, " Developing patterns," Nat. Rev. Neurosci. 7 (5), 328 (2006). 10.1038/nrn1922
    • (2006) Nat. Rev. Neurosci. , vol.7 , Issue.5 , pp. 328
    • Hutchinson, E.1
  • 7
    • 0342749362 scopus 로고    scopus 로고
    • Stereotactic biopsy for brain tumors: Is it always necessary?
    • J. Vaquero, R. Martínez, and M. Manrique, " Stereotactic biopsy for brain tumors: Is it always necessary?," Surg. Neurol. 53 (5), 432-438 (2000). 10.1016/S0090-3019(00)00213-5
    • (2000) Surg. Neurol. , vol.53 , Issue.5 , pp. 432-438
    • Vaquero, J.1    Martínez, R.2    Manrique, M.3
  • 9
    • 0032101402 scopus 로고    scopus 로고
    • Computed imaging-assisted stereotactic brain biopsy: A risk analysis of 225 consecutive cases
    • P. D. Sawin, P. W. Hitchon, K. A. Follett, and J. C. Torner, " Computed imaging-assisted stereotactic brain biopsy: A risk analysis of 225 consecutive cases," Surg. Neurol. 49 (6), 640-649 (1998). 10.1016/S0090-3019(97)00435-7
    • (1998) Surg. Neurol. , vol.49 , Issue.6 , pp. 640-649
    • Sawin, P.D.1    Hitchon, P.W.2    Follett, K.A.3    Torner, J.C.4
  • 10
    • 84946136004 scopus 로고    scopus 로고
    • Radiogenomics and radioproteomics
    • M. Djekidel, " Radiogenomics and radioproteomics," OMICS J. Radiol. 2 (2), 1000115 (2013). 10.4172/2167-7964.1000115
    • (2013) OMICS J. Radiol. , vol.2 , Issue.2
    • Djekidel, M.1
  • 12
    • 0026538915 scopus 로고
    • Increasing incidence of primary malignant brain tumors: Influence of diagnostic methods
    • M. Desmeules, T. Mikkelsen, and Y. Mao, " Increasing incidence of primary malignant brain tumors: Influence of diagnostic methods," J. Natl. Cancer Inst. 84 (6), 442-445 (1992). 10.1093/jnci/84.6.442
    • (1992) J. Natl. Cancer Inst. , vol.84 , Issue.6 , pp. 442-445
    • Desmeules, M.1    Mikkelsen, T.2    Mao, Y.3
  • 13
    • 33846925354 scopus 로고    scopus 로고
    • MRI of the pancreas: Tumours and tumour-simulating processes
    • W. Schima, " MRI of the pancreas: Tumours and tumour-simulating processes," Cancer Imaging 6 (1), 199-203 (2006). 10.1102/1470-7330.2006.0035
    • (2006) Cancer Imaging , vol.6 , Issue.1 , pp. 199-203
    • Schima, W.1
  • 16
    • 33748181096 scopus 로고    scopus 로고
    • Machine learning for detection and diagnosis of disease
    • P. Sajda, " Machine learning for detection and diagnosis of disease," Annu. Rev. Biomed. Eng. 8, 537-565 (2006). 10.1146/annurev.bioeng.8.061505.095802
    • (2006) Annu. Rev. Biomed. Eng. , vol.8 , pp. 537-565
    • Sajda, P.1
  • 19
    • 77950579796 scopus 로고    scopus 로고
    • Robust texture features for response monitoring of glioblastoma multiforme on T1-weighted and T2-FLAIR MR images: A preliminary investigation in terms of identification and segmentation
    • D. Assefa, H. Keller, C. Ménard, N. Laperriere, R. J. Ferrari, and I. Yeung, " Robust texture features for response monitoring of glioblastoma multiforme on T1-weighted and T2-FLAIR MR images: A preliminary investigation in terms of identification and segmentation," Med. Phys. 37 (4), 1722-1736 (2010). 10.1118/1.3357289
    • (2010) Med. Phys. , vol.37 , Issue.4 , pp. 1722-1736
    • Assefa, D.1    Keller, H.2    Ménard, C.3    Laperriere, N.4    Ferrari, R.J.5    Yeung, I.6
  • 21
    • 84866170811 scopus 로고    scopus 로고
    • Can dynamic contrast-enhanced magnetic resonance imaging combined with texture analysis differentiate malignant glioneuronal tumors from other glioblastoma?
    • P. A. Eliat, D. Olivié, S. Saïkali, B. Carsin, H. Saint-Jalmes, and J. D. de Certaines, " Can dynamic contrast-enhanced magnetic resonance imaging combined with texture analysis differentiate malignant glioneuronal tumors from other glioblastoma?," Neurol. Res. Int. 195176 (2012). 10.1155/2012/195176
    • (2012) Neurol. Res. Int.
    • Eliat, P.A.1    Olivié, D.2    Saïkali, S.3    Carsin, B.4    Saint-Jalmes, H.5    De Certaines, J.D.6
  • 22
    • 73149086838 scopus 로고    scopus 로고
    • Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme
    • E. I. Zacharaki, S. Wang, S. Chawla, D. Soo Yoo, R. Wolf, E. R. Melhem, and C. Davatzikos, " Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme," Magn. Reson. Med. 62 (6), 1609-1618 (2009). 10.1002/mrm.22147
    • (2009) Magn. Reson. Med. , vol.62 , Issue.6 , pp. 1609-1618
    • Zacharaki, E.I.1    Wang, S.2    Chawla, S.3    Soo Yoo, D.4    Wolf, R.5    Melhem, E.R.6    Davatzikos, C.7
  • 24
    • 84902455541 scopus 로고    scopus 로고
    • Radiologically defined ecological dynamics and clinical outcomes in glioblastoma multiforme: Preliminary results
    • M. Zhou, L. Hall, D. Goldgof, R. Russo, Y. Balagurunathan, R. Gillies, and R. Gatenby, " Radiologically defined ecological dynamics and clinical outcomes in glioblastoma multiforme: Preliminary results," Transl. Oncol. 7 (1), 5-13 (2014). 10.1593/tlo.13730
    • (2014) Transl. Oncol. , vol.7 , Issue.1 , pp. 5-13
    • Zhou, M.1    Hall, L.2    Goldgof, D.3    Russo, R.4    Balagurunathan, Y.5    Gillies, R.6    Gatenby, R.7
  • 28
    • 0031987382 scopus 로고    scopus 로고
    • A nonparametric method for automatic correction of intensity nonuniformity in MRI data
    • J. G. Sled, A. P. Zijdenbos, and A. C. Evans, " A nonparametric method for automatic correction of intensity nonuniformity in MRI data," IEEE Trans. Med. Imaging 17 (1), 87-97 (1998). 10.1109/42.668698
    • (1998) IEEE Trans. Med. Imaging , vol.17 , Issue.1 , pp. 87-97
    • Sled, J.G.1    Zijdenbos, A.P.2    Evans, A.C.3
  • 31
    • 84946120847 scopus 로고    scopus 로고
    • See supplementary material at E-MPHYA6-42-058511 for the list of parameters used for texture extraction as well as other classifier performance metrics
    • See supplementary material at http://dx.doi.org/10.1118/1.4934373 E-MPHYA6-42-058511 for the list of parameters used for texture extraction as well as other classifier performance metrics.
  • 34
    • 35649021357 scopus 로고    scopus 로고
    • Fractal analysis of contours of breast masses in mammograms
    • R. M. Rangayyan and T. M. Nguyen, " Fractal analysis of contours of breast masses in mammograms," J. Digital Imaging 20 (3), 223-237 (2007). 10.1007/s10278-006-0860-9
    • (2007) J. Digital Imaging , vol.20 , Issue.3 , pp. 223-237
    • Rangayyan, R.M.1    Nguyen, T.M.2
  • 35
    • 0035440214 scopus 로고    scopus 로고
    • A fast algorithm for multilevel thresholding
    • P. S. Liao, T. S. Chen, and P. C. Chung, " A fast algorithm for multilevel thresholding," J. Inf. Sci. Eng. 17 (5), 713-727 (2001).
    • (2001) J. Inf. Sci. Eng. , vol.17 , Issue.5 , pp. 713-727
    • Liao, P.S.1    Chen, T.S.2    Chung, P.C.3
  • 36
    • 0001416258 scopus 로고
    • Texture analysis using gray level run lengths
    • M. M. Galloway, " Texture analysis using gray level run lengths," Comput. Graphics Image Process. 4 (2), 172-179 (1975). 10.1016/S0146-664X(75)80008-6
    • (1975) Comput. Graphics Image Process. , vol.4 , Issue.2 , pp. 172-179
    • Galloway, M.M.1
  • 37
    • 0025585326 scopus 로고
    • Use of gray value distribution of run lengths for texture analysis
    • A. Chu, C. M. Sehgal, and J. F. Greenleaf, " Use of gray value distribution of run lengths for texture analysis," Pattern Recognit. Lett. 11 (6), 415-419 (1990). 10.1016/0167-8655(90)90112-F
    • (1990) Pattern Recognit. Lett. , vol.11 , Issue.6 , pp. 415-419
    • Chu, A.1    Sehgal, C.M.2    Greenleaf, J.F.3
  • 38
    • 0032206479 scopus 로고    scopus 로고
    • Texture information in run-length matrices
    • X. Tang, " Texture information in run-length matrices," IEEE Trans. Image Process. 7 (11), 1602-1609 (1998). 10.1109/83.725367
    • (1998) IEEE Trans. Image Process. , vol.7 , Issue.11 , pp. 1602-1609
    • Tang, X.1
  • 39
    • 84944199896 scopus 로고    scopus 로고
    • Gray scale and rotation invariant texture classification with local binary patterns
    • in (Springer, Berlin, Heidelberg, Dublin, Ireland)
    • T. Ojala, M. Pietikäinen, and T. Mäenpää, " Gray scale and rotation invariant texture classification with local binary patterns," in Computer Vision-ECCV 2000 (Springer, Berlin, Heidelberg, Dublin, Ireland, 2000), pp. 404-420.
    • (2000) Computer Vision-ECCV 2000 , pp. 404-420
    • Ojala, T.1    Pietikäinen, M.2    Mäenpää, T.3
  • 40
    • 33947167478 scopus 로고    scopus 로고
    • Face description with local binary patterns: Application to face recognition
    • T. Ahonen, A. Hadid, and M. Pietikainen, " Face description with local binary patterns: Application to face recognition," IEEE Trans. Pattern Anal. Mach. Intell. 28 (12), 2037-2041 (2006). 10.1109/TPAMI.2006.244
    • (2006) IEEE Trans. Pattern Anal. Mach. Intell. , vol.28 , Issue.12 , pp. 2037-2041
    • Ahonen, T.1    Hadid, A.2    Pietikainen, M.3
  • 42
    • 84886386760 scopus 로고    scopus 로고
    • Illumination robust optical flow model based on histogram of oriented gradients
    • in (Springer, Berlin, Heidelberg)
    • H. A. Rashwan, M. A. Mohamed, M. A. Garcia, B. Mertsching, and D. Puig, " Illumination robust optical flow model based on histogram of oriented gradients," in Pattern Recognition (Springer, Berlin, Heidelberg, 2013), pp. 354-363.
    • (2013) Pattern Recognition , pp. 354-363
    • Rashwan, H.A.1    Mohamed, M.A.2    Garcia, M.A.3    Mertsching, B.4    Puig, D.5
  • 43
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. G. Lowe, " Distinctive image features from scale-invariant keypoints," Int. J. Comput. Vision 60 (2), 91-110 (2004). 10.1023/B:VISI.0000029664.99615.94
    • (2004) Int. J. Comput. Vision , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 45
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman, " Random forests," Mach. Learn. 45 (1), 5-32 (2001). 10.1023/A:1010933404324
    • (2001) Mach. Learn. , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 47
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by randomForest
    • A. Liaw and M. Wiener, " Classification and regression by randomForest," R News 2 (3), 18-22 (2002).
    • (2002) R News , vol.2 , Issue.3 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 48
  • 49
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: A practical and powerful approach to multiple testing
    • Y. Benjamini and Y. Hochberg, " Controlling the false discovery rate: A practical and powerful approach to multiple testing," J. R. Stat. Soc., Ser. B 57 (1), 289-300 (1995). 10.2307/2346101
    • (1995) J. R. Stat. Soc., Ser. B , vol.57 , Issue.1 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.