메뉴 건너뛰기




Volumn 2015-August, Issue , 2015, Pages 1996-2000

A novel approach for automatic acoustic novelty detection using a denoising autoencoder with bidirectional LSTM neural networks

Author keywords

Acoustic Novelty Detection; Bidirectional LSTM; Denoising Autoencorder; Recurrent Neural Networks

Indexed keywords

AUDIO SIGNAL PROCESSING; LEARNING SYSTEMS; RECURRENT NEURAL NETWORKS; SPEECH COMMUNICATION;

EID: 84946055465     PISSN: 15206149     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICASSP.2015.7178320     Document Type: Conference Paper
Times cited : (236)

References (29)
  • 2
    • 0037248049 scopus 로고    scopus 로고
    • Experimental validation of a structural health monitoring methodology: Part i. novelty detection on a laboratory structure
    • K. Worden, G. Manson, and D. Allman, "Experimental validation of a structural health monitoring methodology: Part i. novelty detection on a laboratory structure," Journal of Sound and Vibration, vol. 259, no. 2, pp. 323-343, 2003.
    • (2003) Journal of Sound and Vibration , vol.259 , Issue.2 , pp. 323-343
    • Worden, K.1    Manson, G.2    Allman, D.3
  • 3
    • 33745917684 scopus 로고    scopus 로고
    • Support vector machine in novelty detection for multi-channel combustion data
    • J. Wang, Z. Yi, J. Zurada, B. L. Lu, and H. Yin, Eds. Springer Berlin Heidelberg
    • L. Clifton, H. Yin, and Y. Zhang, "Support vector machine in novelty detection for multi-channel combustion data," in Advances in Neural Networks-ISNN 2006, J. Wang, Z. Yi, J. Zurada, B. L. Lu, and H. Yin, Eds., vol. 3973 of Lecture Notes in Computer Science, pp. 836-843. Springer Berlin Heidelberg, 2006.
    • (2006) Advances in Neural Networks-ISNN 2006 of Lecture Notes in Computer Science , vol.3973 , pp. 836-843
    • Clifton, L.1    Yin, H.2    Zhang, Y.3
  • 5
    • 0028480283 scopus 로고
    • Novelty detection and neural network validation
    • Aug
    • C. M. Bishop, "Novelty detection and neural network validation," IEEE Vision, Image and Signal Processing, vol. 141, no. 4, pp. 217-222, Aug 1994.
    • (1994) IEEE Vision, Image and Signal Processing , vol.141 , Issue.4 , pp. 217-222
    • Bishop, C.M.1
  • 9
    • 0034825091 scopus 로고    scopus 로고
    • Supervised versus unsupervised binary-learning by feedforward neural networks
    • N. Japkowicz, "Supervised versus unsupervised binary-learning by feedforward neural networks," Machine Learning, vol. 42, no. 1-2, pp. 97-122, 2001.
    • (2001) Machine Learning , vol.42 , Issue.1-2 , pp. 97-122
    • Japkowicz, N.1
  • 10
    • 33847410597 scopus 로고    scopus 로고
    • One-class document classification via neural networks
    • L. Manevitz and M. Yousef, "One-class document classification via neural networks," Neurocomputing, vol. 70, no. 79, pp. 1466-1481, 2007.
    • (2007) Neurocomputing , vol.70 , Issue.79 , pp. 1466-1481
    • Manevitz, L.1    Yousef, M.2
  • 12
    • 0042366263 scopus 로고    scopus 로고
    • Statistical damage classification under changing environmental and operational conditions
    • H. Sohn, K. Worden, and C. R. Farrar, "Statistical damage classification under changing environmental and operational conditions," Journal of Intelligent Material Systems and Structures, vol. 13, no. 9, pp. 561-574, 2002.
    • (2002) Journal of Intelligent Material Systems and Structures , vol.13 , Issue.9 , pp. 561-574
    • Sohn, H.1    Worden, K.2    Farrar, C.R.3
  • 16
    • 79960670476 scopus 로고    scopus 로고
    • Probabilistic novelty detection for acoustic surveillance under real-world conditions
    • S. Ntalampiras, I. Potamitis, and N. Fakotakis, "Probabilistic novelty detection for acoustic surveillance under real-world conditions," IEEE Transactions on Multimedia, vol. 13, no. 4, pp. 713-719, 2011.
    • (2011) IEEE Transactions on Multimedia , vol.13 , Issue.4 , pp. 713-719
    • Ntalampiras, S.1    Potamitis, I.2    Fakotakis, N.3
  • 18
    • 84860644702 scopus 로고    scopus 로고
    • Measuring invariances in deep networks
    • Y. Bengio, D. Schuurmans, J. Lafferty, C. Williams, and A. Culotta, Eds. Curran Associates, Inc.
    • I. Goodfellow, H. Lee, Q. V. Le, A. Saxe, and A. Y. Ng, "Measuring invariances in deep networks," in Advances in Neural Information Processing Systems 22, Y. Bengio, D. Schuurmans, J. Lafferty, C. Williams, and A. Culotta, Eds., pp. 646-654. Curran Associates, Inc., 2009.
    • (2009) Advances in Neural Information Processing Systems , vol.22 , pp. 646-654
    • Goodfellow, I.1    Lee, H.2    Le, Q.V.3    Saxe, A.4    Ng, A.Y.5
  • 20
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • Dec
    • P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P. A. Manzagol, "Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion," Journal of Machine Learning Research, vol. 11, pp. 3371-3408, Dec. 2010.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.A.5
  • 21
    • 84863771261 scopus 로고    scopus 로고
    • Universal onset detection with bidirectional long short-term memory neural networks
    • F. Eyben, S. Böck, B. Schuller, and A. Graves, "Universal onset detection with bidirectional long short-term memory neural networks.," in ISMIR, 2010, pp. 589-594.
    • (2010) ISMIR , pp. 589-594
    • Eyben, F.1    Böck, S.2    Schuller, B.3    Graves, A.4
  • 23
  • 24
    • 27744588611 scopus 로고    scopus 로고
    • Framewise phoneme classification with bidirectional fLSTMg and other neural network architectures
    • fIJCNNg 2005
    • A. Graves and J. Schmidhuber, "Framewise phoneme classification with bidirectional fLSTMg and other neural network architectures," Neural Networks, vol. 18, no. 56, pp. 602-610, 2005, fIJCNNg 2005.
    • (2005) Neural Networks , vol.18 , Issue.56 , pp. 602-610
    • Graves, A.1    Schmidhuber, J.2
  • 26
    • 84936110637 scopus 로고    scopus 로고
    • Introducing CURRENNT, the Munich open-source CUDA RecurREnt Neural Network Toolkit
    • in press
    • F. Weninger, J. Bergmann, and B. Schuller, "Introducing CURRENNT, the Munich open-source CUDA RecurREnt Neural Network Toolkit," Journal of Machine Learning Research, 2014, in press.
    • (2014) Journal of Machine Learning Research
    • Weninger, F.1    Bergmann, J.2    Schuller, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.