-
1
-
-
0029306621
-
Continuous speech recognition: An introduction to the hybrid HMM/connectionist approach
-
N. Morgan and H. Bourlard, Continuous speech recognition: an introduction to the hybrid HMM/connectionist approach, IEEE Signal Process. Mag., vol. 12, no. 3, pp. 24-42, 1995
-
(1995)
IEEE Signal Process. Mag
, vol.12
, Issue.3
, pp. 24-42
-
-
Morgan, N.1
Bourlard, H.2
-
2
-
-
84055222005
-
Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition
-
G. E. Dahl, D. Yu, L. Deng, and A. Acero, Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition, IEEE Trans. Audio, Speech, Language Process., vol. 20, no. 1, pp. 30-42, 2012
-
(2012)
IEEE Trans. Audio, Speech, Language Process
, vol.20
, Issue.1
, pp. 30-42
-
-
Dahl, G.E.1
Yu, D.2
Deng, L.3
Acero, A.4
-
3
-
-
85032751458
-
Deep neural networks for acoustic modeling in speech recognition
-
G. Hinton, L. Deng, D. Yu, G. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. Sainath, and B. Kinsgbury, Deep neural networks for acoustic modeling in speech recognition, IEEE Signal Process. Mag., vol. 29, no. 6, pp. 82-97, 2012
-
(2012)
IEEE Signal Process. Mag
, vol.29
, Issue.6
, pp. 82-97
-
-
Hinton, G.1
Deng, L.2
Yu, D.3
Dahl, G.4
Mohamed, A.-R.5
Jaitly, N.6
Senior, A.7
Vanhoucke, V.8
Nguyen, P.9
Sainath, T.10
Kinsgbury, B.11
-
4
-
-
84919935784
-
Environmentally robust ASR front-end for deep neural network acoustic models
-
T. Yoshioka and M. J. F. Gales, Environmentally robust ASR front-end for deep neural network acoustic models, Comp. Speech, Language, vol. 31, no. 1, pp. 65-86, 2015
-
(2015)
Comp. Speech, Language
, vol.31
, Issue.1
, pp. 65-86
-
-
Yoshioka, T.1
Gales, M.J.F.2
-
6
-
-
84933559263
-
Linear prediction-based dereverberation with advanced speech enhancement and recognition technologies for the REVERB challenge
-
M. Delcroix, T. Yoshioka, A. Ogawa, Y. Kubo, M. Fujimoto, I. Nobutaka, K. Kinoshita, M. Espi, T. Hori, T. Nakatani, and A. Nakamura, Linear prediction-based dereverberation with advanced speech enhancement and recognition technologies for the REVERB challenge, in Proc. REVERB Worksh., 2014
-
(2014)
Proc. REVERB Worksh
-
-
Delcroix, M.1
Yoshioka, T.2
Ogawa, A.3
Kubo, Y.4
Fujimoto, M.5
Nobutaka, I.6
Kinoshita, K.7
Espi, M.8
Hori, T.9
Nakatani, T.10
Nakamura, A.11
-
7
-
-
85032751613
-
Making machines understand us in reverberant rooms: Robustness against reverberation for automatic speech recognition
-
T. Yoshioka, A. Sehr, M. Delcroix, K. Kinoshita, R. Maas, T. Nakatani, and W. Kellermann, Making machines understand us in reverberant rooms: robustness against reverberation for automatic speech recognition, IEEE Signal Process. Mag., vol. 29, no. 6, pp. 114-126, 2012
-
(2012)
IEEE Signal Process. Mag
, vol.29
, Issue.6
, pp. 114-126
-
-
Yoshioka, T.1
Sehr, A.2
Delcroix, M.3
Kinoshita, K.4
Maas, R.5
Nakatani, T.6
Kellermann, W.7
-
8
-
-
84867693894
-
Generalization of multi-channel linear prediction methods for blind MIMO impulse response shortening
-
T. Yoshioka and T. Nakatani, Generalization of multi-channel linear prediction methods for blind MIMO impulse response shortening, IEEE Trans. Audio, Speech, Language Process., vol. 20, no. 10, pp. 2707-2720, 2012
-
(2012)
IEEE Trans. Audio, Speech, Language Process
, vol.20
, Issue.10
, pp. 2707-2720
-
-
Yoshioka, T.1
Nakatani, T.2
-
9
-
-
77955673019
-
Model-based feature enhancement for reverberant speech recognition
-
A. Krueger and R. Haeb-Umbach, Model-based feature enhancement for reverberant speech recognition, IEEE Trans. Audio, Speech, Language Process., vol. 18, no. 7, pp. 1692-1707, 2010
-
(2010)
IEEE Trans. Audio, Speech, Language Process
, vol.18
, Issue.7
, pp. 1692-1707
-
-
Krueger, A.1
Haeb-Umbach, R.2
-
11
-
-
77955683144
-
Reverberation modelbased decoding in the logmelspec domain for robust distanttalking speech recognition
-
A. Sehr, R. Maas, and W. Kellermann, Reverberation modelbased decoding in the logmelspec domain for robust distanttalking speech recognition, IEEE Trans. Audio, Speech, Language Process., vol. 18, no. 7, pp. 1676-1691, 2010
-
(2010)
IEEE Trans. Audio, Speech, Language Process
, vol.18
, Issue.7
, pp. 1676-1691
-
-
Sehr, A.1
Maas, R.2
Kellermann, W.3
-
13
-
-
84905247922
-
Impact of singlemicrophone dereverberation on DNN-based meeting transcription systems
-
T. Yoshioka, X. Chen, and M. J. F. Gales, Impact of singlemicrophone dereverberation on DNN-based meeting transcription systems, in Proc. Int. Conf. Acoust., Speech, Signal Process., 2014, pp. 5527-5531
-
(2014)
Proc. Int. Conf. Acoust., Speech, Signal Process
, pp. 5527-5531
-
-
Yoshioka, T.1
Chen, X.2
Gales, M.J.F.3
-
14
-
-
14344274593
-
A new method based on spectral subtraction for speech dereverberation
-
K. Lebart, J. M. Boucher, and P. N. Denbigh, A new method based on spectral subtraction for speech dereverberation, Acta Acustica United with Acustica, vol. 87, pp. 359-366, 2001
-
(2001)
Acta Acustica United with Acustica
, vol.87
, pp. 359-366
-
-
Lebart, K.1
Boucher, J.M.2
Denbigh, P.N.3
-
16
-
-
78049354148
-
Maximum-likelihood-based cepstral inverse filtering for blind speech dereverberation
-
K. Kumar and R. Stern, Maximum-likelihood-based cepstral inverse filtering for blind speech dereverberation, in Proc. Int. Conf. Acoust., Speech, Signal Process., 2010, pp. 4282-4285
-
(2010)
Proc. Int. Conf. Acoust., Speech, Signal Process
, pp. 4282-4285
-
-
Kumar, K.1
Stern, R.2
-
17
-
-
84893668957
-
Investigation of multilingual deep neural networks for spoken term detection
-
K. M. Knill, M. J. F. Gales, S. P. Rath, P. C. Woodland, C. Zhang, and S.-X Zhang, Investigation of multilingual deep neural networks for spoken term detection, in Proc. Workshop. Automat. Speech Recognition, Understanding, 2013, pp. 138-143
-
(2013)
Proc. Workshop. Automat. Speech Recognition, Understanding
, pp. 138-143
-
-
Knill, K.M.1
Gales, M.J.F.2
Rath, S.P.3
Woodland, P.C.4
Zhang, C.5
Zhang, S.-X.6
-
18
-
-
84905252069
-
Combining time-and frequency-domain convolution in convolutional neural network-based phone recognition
-
L. Tóth, Combining time-and frequency-domain convolution in convolutional neural network-based phone recognition, in Proc. Int. Conf. Acoust., Speech, Signal Process., 2014, pp. 190-194
-
(2014)
Proc. Int. Conf. Acoust., Speech, Signal Process
, pp. 190-194
-
-
Tóth, L.1
-
19
-
-
84906214784
-
Exploring convolutional neural network structures and optimization techniques for speech recognition
-
O. Abdel-Hamid, L. Deng, and D. Yu, Exploring convolutional neural network structures and optimization techniques for speech recognition, in Proc. Interspeech, 2013, pp. 3366-3370
-
(2013)
Proc. Interspeech
, pp. 3366-3370
-
-
Abdel-Hamid, O.1
Deng, L.2
Yu, D.3
-
20
-
-
84893654379
-
Improvements to deep convolutional neural networks for LVCSR
-
T. N. Sainath, B. Kingsbury, A.-r. Mohamed, G. E. Dahl, G. Saon, H. Soltau, T. Beran, A. Y. Aravkin, and B. Ramabhadran, Improvements to deep convolutional neural networks for LVCSR, in Proc.Workshop. Automat. Speech Recognition, Understanding, 2013, pp. 315-320
-
(2013)
Proc.Workshop. Automat. Speech Recognition, Understanding
, pp. 315-320
-
-
Sainath, T.N.1
Kingsbury, B.2
Mohamed, A.-R.3
Dahl, G.E.4
Saon, G.5
Soltau, H.6
Beran, T.7
Aravkin, A.Y.8
Ramabhadran, B.9
-
21
-
-
84901999583
-
Convolutional neural networks for distant speech recognition
-
P. Swietojanski, A. Ghoshal, and S. Renals, Convolutional neural networks for distant speech recognition, IEEE Signal Process. Letters, vol. 21, no. 9, pp. 1120-1124, 2014
-
(2014)
IEEE Signal Process. Letters
, vol.21
, Issue.9
, pp. 1120-1124
-
-
Swietojanski, P.1
Ghoshal, A.2
Renals, S.3
-
22
-
-
84946069718
-
The NTU-ADSC systems for reverberation challenge 2014
-
X. Xiao, Z. Shengkui, D. H. H. Nguyen, Z. Xionghu, D. Jones, E.-S. Chng, and H. Li, The NTU-ADSC systems for reverberation challenge 2014, in Proc. REVERB Worksh., 2014
-
(2014)
Proc. REVERB Worksh
-
-
Xiao, X.1
Shengkui, Z.2
Nguyen, D.H.H.3
Xionghu, Z.4
Jones, D.5
Chng, E.-S.6
Li, H.7
-
23
-
-
84946035684
-
The MERL/MELCO/TUM system for the REVERB challenge using deep recurrent neural network feature enhancement
-
F. J. Weninger, S. Watanabe, J. Le Roux, J. Hershey, Y. Tachioka, J. T. Geiger, B. W. Schuller, and G. Rigoll, The MERL/MELCO/TUM system for the REVERB challenge using deep recurrent neural network feature enhancement, in Proc. REVERB Worksh., 2014
-
(2014)
Proc. REVERB Worksh
-
-
Weninger, F.J.1
Watanabe, S.2
Le Roux, J.3
Hershey, J.4
Tachioka, Y.5
Geiger, J.T.6
Schuller, B.W.7
Rigoll, G.8
-
24
-
-
84928158249
-
Robust features and system fusion for reverberation-robust speech recognition
-
V. Mitra, W. Wang, Y. Lei, A. Kathol, G. Sivaraman, and C. Espy-Wilson, Robust features and system fusion for reverberation-robust speech recognition, in Proc. REVERB Worksh., 2014
-
(2014)
Proc. REVERB Worksh
-
-
Mitra, V.1
Wang, W.2
Lei, Y.3
Kathol, A.4
Sivaraman, G.5
Espy-Wilson, C.6
-
25
-
-
84905252792
-
Joint noise adaptive training for robust automatic speech recognition
-
A. Narayanan and D. Wang, Joint noise adaptive training for robust automatic speech recognition, in Proc. Int. Conf. Acoust., Speech, Signal Process., 2014, pp. 2523-2527
-
(2014)
Proc. Int. Conf. Acoust., Speech, Signal Process
, pp. 2523-2527
-
-
Narayanan, A.1
Wang, D.2
-
26
-
-
84905216003
-
Deep recurrent de-noising auto-encoder and blind de-reverberation for reverberated speech recognition
-
F.Weninger, S.Watanabe, Y. Tachioka, and B. Schuller, Deep recurrent de-noising auto-encoder and blind de-reverberation for reverberated speech recognition, in Proc. Int. Conf. Acoust., Speech, Signal Process., 2014, pp. 4656-4660
-
(2014)
Proc. Int. Conf. Acoust., Speech, Signal Process
, pp. 4656-4660
-
-
Weninger, F.1
Watanabe, S.2
Tachioka, Y.3
Schuller, B.4
-
27
-
-
84911473441
-
Convolutional neural networks for speech recognition
-
O. Abdel-Hamid, A.-r. Mohamed, H. Jiang, L. Deng, G. Penn, and D. Yu, Convolutional neural networks for speech recognition, IEEE/ACM Trans. Audio, Speech, Language Process., vol. 22, no. 10, pp. 1533-1545, 2014
-
(2014)
IEEE/ACM Trans. Audio, Speech, Language Process
, vol.22
, Issue.10
, pp. 1533-1545
-
-
Abdel-Hamid, O.1
Mohamed, A.-R.2
Jiang, H.3
Deng, L.4
Penn, G.5
Yu, D.6
-
28
-
-
84893622444
-
The REVERB challenge: A common evaluation framework for dereverberation and recognition of reverberant speech
-
K. Kinoshita, T. Yoshioka, T. Nakatani, A. Sehr, W. Kellermann, and R. Maas, The REVERB challenge: a common evaluation framework for dereverberation and recognition of reverberant speech, in Proc. IEEE Worksh. Appl. Signal Process. Audio, Acoust., 2013
-
(2013)
Proc. IEEE Worksh. Appl. Signal Process. Audio, Acoust
-
-
Kinoshita, K.1
Yoshioka, T.2
Nakatani, T.3
Sehr, A.4
Kellermann, W.5
Maas, R.6
-
30
-
-
84858976070
-
Feature engineering in context-dependent deep neural networks for conversational speech transcription
-
F. Seide, G. Li, X. Chen, and D. Yu, Feature engineering in context-dependent deep neural networks for conversational speech transcription, in Proc. Workshop. Automat. Speech Recognition, Understanding, 2011, pp. 24-29
-
(2011)
Proc. Workshop. Automat. Speech Recognition, Understanding
, pp. 24-29
-
-
Seide, F.1
Li, G.2
Chen, X.3
Yu, D.4
|