메뉴 건너뛰기




Volumn , Issue , 2015, Pages 40-51

Holmes: A comprehensive anomaly detection system for daily in-home activities

Author keywords

Anomaly detection; Human behavior modeling

Indexed keywords

ALARM SYSTEMS; BEHAVIORAL RESEARCH; COMPLEX NETWORKS; ERRORS; SEMANTICS; SIGNAL DETECTION; SOCIAL SCIENCES; WIRELESS SENSOR NETWORKS;

EID: 84945951225     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/DCOSS.2015.20     Document Type: Conference Paper
Times cited : (52)

References (35)
  • 1
    • 84863165439 scopus 로고    scopus 로고
    • chapter 14. 3. 12 Hierarchical clustering. Springer
    • The Elements of Statistical Learning, chapter 14. 3. 12 Hierarchical clustering. Springer, 2009.
    • (2009) The Elements of Statistical Learning
  • 2
    • 84945964367 scopus 로고    scopus 로고
    • Xyz. http://www. XYZ. com/, 2014.
    • (2014)
  • 3
    • 0002221136 scopus 로고
    • Fast algorithms for mining association rules
    • R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In VLDB, 1994.
    • (1994) VLDB
    • Agrawal, R.1    Srikant, R.2
  • 4
    • 0029212693 scopus 로고
    • Mining sequential patterns
    • R. Agrawal and R. Srikant. Mining sequential patterns. In ICDE, 1995.
    • (1995) ICDE
    • Agrawal, R.1    Srikant, R.2
  • 6
    • 67049149448 scopus 로고    scopus 로고
    • Technical report, Department of Computer Science and Engineering, University of Minnesota
    • V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. Technical report, Department of Computer Science and Engineering, University of Minnesota, 2007.
    • (2007) Anomaly Detection: A Survey
    • Chandola, V.1    Banerjee, A.2    Kumar, V.3
  • 10
    • 80054878713 scopus 로고    scopus 로고
    • An approach for detecting deviations in daily routine for long-term behavior analysis
    • D. Elbert, H. Storf, M. Eisenbarth, O.ünalan, and M. Schmitt. An approach for detecting deviations in daily routine for long-term behavior analysis. In PervasiveHealth, 2011.
    • (2011) PervasiveHealth
    • Elbert, D.1    Storf, H.2    Eisenbarth, M.3    Ünalan, O.4    Schmitt, M.5
  • 11
    • 45749146270 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial databases with noise
    • M. Ester, H. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. In KDD, 1996.
    • (1996) KDD
    • Ester, M.1    Kriegel, H.2    Sander, J.3    Xu, X.4
  • 12
    • 33746390604 scopus 로고    scopus 로고
    • The independent lifestyle assistant: Lessons learned
    • K. Z. Haigh, L. M. Kiff, and G. Ho. The independent lifestyle assistant: Lessons learned. Assistive Technology, 18(1):87-106, 2006.
    • (2006) Assistive Technology , vol.18 , Issue.1 , pp. 87-106
    • Haigh, K.Z.1    Kiff, L.M.2    Ho, G.3
  • 13
    • 84861537642 scopus 로고    scopus 로고
    • A framework for supervising lifestyle diseases using long-term activity monitoring
    • Y. Han, M. Han, S. Lee, A. M. J. Sarkar, and Y.-K. Lee. A framework for supervising lifestyle diseases using long-term activity monitoring. Sensors, 12(5), 2012.
    • (2012) Sensors , vol.12 , Issue.5
    • Han, Y.1    Han, M.2    Lee, S.3    Sarkar, A.M.J.4    Lee, Y.-K.5
  • 14
    • 84865000093 scopus 로고    scopus 로고
    • Automatic assessment of cognitive impairment through electronic observation of object usage
    • M. R. Hodges, N. L. Kirsch, M. W. Newman, and M. E. Pollack. Automatic assessment of cognitive impairment through electronic observation of object usage. In Pervasive, 2010.
    • (2010) Pervasive
    • Hodges, M.R.1    Kirsch, N.L.2    Newman, M.W.3    Pollack, M.E.4
  • 17
    • 80054912064 scopus 로고    scopus 로고
    • Detecting anomalous sensor events in smart home data for enhancing the living experience
    • V. R. Jakkula and D. J. Cook. Detecting anomalous sensor events in smart home data for enhancing the living experience. In AAAI, 2011.
    • (2011) AAAI
    • Jakkula, V.R.1    Cook, D.J.2
  • 18
    • 67649827454 scopus 로고    scopus 로고
    • Temporal pattern discovery for anomaly detection in smart homes
    • V. R. Jakkula, D. J. Cook, and A. S. Crandall. Temporal pattern discovery for anomaly detection in smart homes. In IE, 2007.
    • (2007) IE
    • Jakkula, V.R.1    Cook, D.J.2    Crandall, A.S.3
  • 23
    • 49249121643 scopus 로고    scopus 로고
    • A long-term evaluation of sensing modalities for activity recognition
    • B. Logan, J. Healey, M. Philipose, E. M. Tapia, and S. Intille. A long-term evaluation of sensing modalities for activity recognition. In UbiComp, 2007.
    • (2007) UbiComp
    • Logan, B.1    Healey, J.2    Philipose, M.3    Tapia, E.M.4    Intille, S.5
  • 26
    • 52249091810 scopus 로고    scopus 로고
    • Typical behavior patterns extraction and anomaly detection algorithm based on accumulated home sensor data
    • T. Mori, A. Fujii, M. Shimosaka, H. Noguchi, and T. Sato. Typical behavior patterns extraction and anomaly detection algorithm based on accumulated home sensor data. In FGCN, 2007.
    • (2007) FGCN
    • Mori, T.1    Fujii, A.2    Shimosaka, M.3    Noguchi, H.4    Sato, T.5
  • 28
    • 84864229388 scopus 로고    scopus 로고
    • Unobtrusive anomaly detection in presence of elderly in a smart-home environment
    • M. Novak, M. Binas, and F. Jakab. Unobtrusive anomaly detection in presence of elderly in a smart-home environment. In ELEKTRO, 2012.
    • (2012) ELEKTRO
    • Novak, M.1    Binas, M.2    Jakab, F.3
  • 29
    • 84945939464 scopus 로고    scopus 로고
    • Anomaly detection in user daily patterns in smart-home environment
    • M. Novak, J. F. , and L. L. Anomaly detection in user daily patterns in smart-home environment. JSHI, 3(6), 2013.
    • (2013) JSHI , vol.3 , Issue.6
    • Novak, J.F.M.1
  • 30
    • 0035016443 scopus 로고    scopus 로고
    • Prefixspan: Mining sequential patterns efficiently by prefix-projected pattern growth
    • J. Pei, J. Han, B. Mortazavi-Asl, and H. Pinto. Prefixspan: Mining sequential patterns efficiently by prefix-projected pattern growth. In ICDE, 2001.
    • (2001) ICDE
    • Pei, J.1    Han, J.2    Mortazavi-Asl, B.3    Pinto, H.4
  • 31
    • 84927712838 scopus 로고    scopus 로고
    • An unsupervised pattern clustering approach for identifying abnormal user behaviors in smart home
    • P. Sukanya and K. S. Gayathri. An unsupervised pattern clustering approach for identifying abnormal user behaviors in smart home. International Journal of Computer Science and Network, 2(3), 2013.
    • (2013) International Journal of Computer Science and Network , vol.2 , Issue.3
    • Sukanya, P.1    Gayathri, K.S.2
  • 32
    • 70349778496 scopus 로고    scopus 로고
    • Assessing everyday life behavioral rhythms for the older generation
    • G. Virone. Assessing everyday life behavioral rhythms for the older generation. Pervasive and Mobile Computing, 5(1), 2009.
    • (2009) Pervasive and Mobile Computing , vol.5 , Issue.1
    • Virone, G.1
  • 35
    • 84865005235 scopus 로고    scopus 로고
    • Senscare: Semi-automatic activity summarization system for elderly care
    • P. Wu, H. Peng, J. Zhu, and Y. Zhang. Senscare: Semi-automatic activity summarization system for elderly care. In MobiCASE, 2011.
    • (2011) MobiCASE
    • Wu, P.1    Peng, H.2    Zhu, J.3    Zhang, Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.