메뉴 건너뛰기




Volumn 7, Issue 10, 2015, Pages 12737-12762

The potential of pan-sharpened EnMAP data for the assessment of wheat LAI

Author keywords

AisaEAGLE; EnMAP; Hyperspectral; Leaf area index; Pan sharpening; Partial least squares regression; Sentinel 2

Indexed keywords

AGRICULTURE; APPLICATION PROGRAMS; IMAGE RESOLUTION; LEAST SQUARES APPROXIMATIONS; PLANTS (BOTANY);

EID: 84945937636     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs71012737     Document Type: Article
Times cited : (21)

References (61)
  • 1
    • 0031228124 scopus 로고    scopus 로고
    • Opportunities and limitations for image-based remote sensing in precision crop management
    • Moran, M.S.; Inoue, Y.; Barnes, E.M. Opportunities and limitations for image-based remote sensing in precision crop management. Remote Sens. Environ. 1997, 61, 319-346.
    • (1997) Remote Sens. Environ , vol.61 , pp. 319-346
    • Moran, M.S.1    Inoue, Y.2    Barnes, E.M.3
  • 2
    • 76749142575 scopus 로고    scopus 로고
    • Precision agriculture and food security
    • Gebbers; R.; Adamchuck, V. Precision agriculture and food security. Science 2010, 327, 828-831.
    • (2010) Science , vol.327 , pp. 828-831
    • Gebbers1    , R.2    Adamchuck, V.3
  • 3
    • 0442298832 scopus 로고    scopus 로고
    • Remote sensing applications for precision agriculture: A learning community approach
    • Seelan, K.S.; Laguetta; S.; Casady, G.M.; Seielstad. G.A. Remote sensing applications for precision agriculture: A learning community approach. Remote Sens. Environ. 2003, 88, 157-169.
    • (2003) Remote Sens. Environ , vol.88 , pp. 157-169
    • Seelan, K.S.1    Laguetta2    , S.3    Casady, G.M.4    Seielstad, G.A.5
  • 4
    • 0036856743 scopus 로고    scopus 로고
    • Precision agriculture-A worldwide overview
    • Zhang, N.; Wang, M.; Wang, N. Precision agriculture-A worldwide overview. Comput. Electron. Agric. 2002, 36, 113-132.
    • (2002) Comput. Electron. Agric , vol.36 , pp. 113-132
    • Zhang, N.1    Wang, M.2    Wang, N.3
  • 5
    • 27644492977 scopus 로고    scopus 로고
    • Temporal and spatial relationships between within-field yield variability in cotton and high-spatial hyperspectral remote sensing imagery
    • Zarco-Tejada, P.J.; Ustin, S.L.; Whiting, M.L. Temporal and spatial relationships between within-field yield variability in cotton and high-spatial hyperspectral remote sensing imagery. Agron. J. 2005, 97, 641-653.
    • (2005) Agron. J , vol.97 , pp. 641-653
    • Zarco-Tejada, P.J.1    Ustin, S.L.2    Whiting, M.L.3
  • 6
    • 0036859106 scopus 로고    scopus 로고
    • Information technology: The global key to precision agriculture and sustainability
    • Cox, S. Information technology: The global key to precision agriculture and sustainability. Comput. Electron. Agric. 2002, 36, 93-111.
    • (2002) Comput. Electron. Agric , vol.36 , pp. 93-111
    • Cox, S.1
  • 7
    • 84887105216 scopus 로고    scopus 로고
    • Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps
    • Mulla, D.J. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosyst. Eng. 2013, 114, 358-371.
    • (2013) Biosyst. Eng , vol.114 , pp. 358-371
    • Mulla, D.J.1
  • 8
    • 0002261150 scopus 로고
    • A review and integrating analysis of spatially-variable control of crop production
    • Schueller, J.K. A review and integrating analysis of spatially-variable control of crop production. Fertil. Res. 1992, 33, 1-34.
    • (1992) Fertil. Res , vol.33 , pp. 1-34
    • Schueller, J.K.1
  • 11
    • 0032054885 scopus 로고    scopus 로고
    • Combining agricultural crop models and satellite observation: From field to regional scales
    • Moulin, S.; Bondeau, A.; Delécolle, R. Combining agricultural crop models and satellite observation: From field to regional scales. Int. J. Remote Sens. 1998, 19, 1021-1036.
    • (1998) Int. J. Remote Sens , vol.19 , pp. 1021-1036
    • Moulin, S.1    Bondeau, A.2    Delécolle, R.3
  • 13
    • 0036323088 scopus 로고    scopus 로고
    • Airborne multispectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture
    • Boegh, E.; Soegaard, H.; Broge, N.; Hasager, C.B.; Jensen, N.O.; Schelde, K.; Thomsen, A. Airborne multispectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture. Remote Sens. Environ. 2002, 81, 179-193.
    • (2002) Remote Sens. Environ , vol.81 , pp. 179-193
    • Boegh, E.1    Soegaard, H.2    Broge, N.3    Hasager, C.B.4    Jensen, N.O.5    Schelde, K.6    Thomsen, A.7
  • 14
    • 0028669029 scopus 로고
    • Ratios of leaf reflectances in narrow wavebands as indicators of plant stress
    • Carter, G.A. Ratios of leaf reflectances in narrow wavebands as indicators of plant stress. Int. J. Remote Sens. 1994, 15, 697-703.
    • (1994) Int. J. Remote Sens , vol.15 , pp. 697-703
    • Carter, G.A.1
  • 15
    • 0026614858 scopus 로고
    • Spectral estimates of absorbed radiation and phytomass production in corn and soybean canopies
    • Daughtry, C.S.T.; Gallo, K.P.; Goward, S.N.; Prince, S.D.; Kustas, W.D. Spectral estimates of absorbed radiation and phytomass production in corn and soybean canopies. Remote Sens. Environ. 1992, 39, 141-152.
    • (1992) Remote Sens. Environ , vol.39 , pp. 141-152
    • Daughtry, C.S.T.1    Gallo, K.P.2    Goward, S.N.3    Prince, S.D.4    Kustas, W.D.5
  • 17
    • 84897027199 scopus 로고    scopus 로고
    • Fusion of hyperspectral and multispectral images: A novel framework based on generalization of pan-sharpening methods
    • Chen, Z.; Pu, H.; Wang, B. Fusion of hyperspectral and multispectral images: A novel framework based on generalization of pan-sharpening methods. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1418-1422.
    • (2014) IEEE Geosci. Remote Sens. Lett , vol.11 , pp. 1418-1422
    • Chen, Z.1    Pu, H.2    Wang, B.3
  • 18
    • 80955164598 scopus 로고    scopus 로고
    • Image sharpening using hyperspectral and multispectral data
    • Mayumi, N.; Iwasaki, A. Image sharpening using hyperspectral and multispectral data. IEEE Int. Geosci. Remote Sens. Symp. 2011, doi:10.1109/IGARSS.2011.6049179.
    • (2011) IEEE Int. Geosci. Remote Sens. Symp
    • Mayumi, N.1    Iwasaki, A.2
  • 19
    • 84904768159 scopus 로고    scopus 로고
    • Effects of pansharpening on vegetation indices
    • Johnson, B. Effects of pansharpening on vegetation indices. ISPRS Int. J. Geo-Inf. 2014, 3, 507-522.
    • (2014) ISPRS Int. J. Geo-Inf , vol.3 , pp. 507-522
    • Johnson, B.1
  • 21
    • 33847629701 scopus 로고    scopus 로고
    • Quantification of plant stress using remote sensing observations and crop models: The case of nitrogen management
    • Baret, F.; Houlès, V.; Guérif, M. Quantification of plant stress using remote sensing observations and crop models: The case of nitrogen management. J. Exp. Bot. 2007, 58, 869-880.
    • (2007) J. Exp. Bot , vol.58 , pp. 869-880
    • Baret, F.1    Houlès, V.2    Guérif, M.3
  • 22
    • 84945902568 scopus 로고    scopus 로고
    • Costs and benefits of satellite-based tools for irrigation management
    • Vuolo, F.; Essl, L.; Atzberger, C. Costs and benefits of satellite-based tools for irrigation management. Front. Environ. Sci. 2015, 3, 1-12.
    • (2015) Front. Environ. Sci , vol.3 , pp. 1-12
    • Vuolo, F.1    Essl, L.2    Atzberger, C.3
  • 24
    • 84924183406 scopus 로고    scopus 로고
    • Structuring contemporary remote sensing image fusion
    • Pohl, C.; van Genderen, J. Structuring contemporary remote sensing image fusion. Int. J. Image Data Fusion 2015, 6, 3-21.
    • (2015) Int. J. Image Data Fusion , vol.6 , pp. 3-21
    • Pohl, C.1    van Genderen, J.2
  • 25
    • 84863154954 scopus 로고    scopus 로고
    • Wavelet-based Bayesian fusion of multispectral and hyperspectral images using Gaussian scale mixture model
    • Zhang, Y. Wavelet-based Bayesian fusion of multispectral and hyperspectral images using Gaussian scale mixture model. Int. J. Image Data Fusion 2012, 3, 23-37.
    • (2012) Int. J. Image Data Fusion , vol.3 , pp. 23-37
    • Zhang, Y.1
  • 27
    • 70350662759 scopus 로고    scopus 로고
    • Noise-resistant wavelet-based Bayesian fusion of multispectral and hyperspectral images
    • Zhang, Y.; de Backer, S.; Scheunders, P. Noise-resistant wavelet-based Bayesian fusion of multispectral and hyperspectral images. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3834-3843.
    • (2009) IEEE Trans. Geosci. Remote Sens , vol.47 , pp. 3834-3843
    • Zhang, Y.1    de Backer, S.2    Scheunders, P.3
  • 32
    • 34247509383 scopus 로고    scopus 로고
    • Image fusion using the Ehlers spectral characteristics preserving algorithm
    • Klonus, S.; Ehlers, M. Image fusion using the Ehlers spectral characteristics preserving algorithm. GIScience Remote Sens. 2007, 44, 93-116.
    • (2007) GIScience Remote Sens , vol.44 , pp. 93-116
    • Klonus, S.1    Ehlers, M.2
  • 33
    • 33846229328 scopus 로고    scopus 로고
    • FFT-enhanced IHS transform method for fusing high-resolution satellite images
    • Ling, Y.; Ehlers, M.; Usery, E.L.; Madden, M. FFT-enhanced IHS transform method for fusing high-resolution satellite images. ISPRS J. Photogramm. Remote Sens. 2007, 61, 381-392.
    • (2007) ISPRS J. Photogramm. Remote Sens , vol.61 , pp. 381-392
    • Ling, Y.1    Ehlers, M.2    Usery, E.L.3    Madden, M.4
  • 34
    • 85006960733 scopus 로고    scopus 로고
    • A comprehensive evaluation of PAN-sharpening algorithms coupled with resampling methods for image synthesis of very high resolution remotely sensed satellite data
    • Jawak, S.D.; Luis, A.J. A comprehensive evaluation of PAN-sharpening algorithms coupled with resampling methods for image synthesis of very high resolution remotely sensed satellite data. Adv. Remote Sens. 2013, 2, 332-344.
    • (2013) Adv. Remote Sens , vol.2 , pp. 332-344
    • Jawak, S.D.1    Luis, A.J.2
  • 37
    • 0032732676 scopus 로고    scopus 로고
    • The use of the empirical line method to calibrate remotely sensed data to reflectance
    • Smith, G.M.; Milton, E.J. The use of the empirical line method to calibrate remotely sensed data to reflectance. Int. J. Remote Sens. 1999, 20, 2653-2662.
    • (1999) Int. J. Remote Sens , vol.20 , pp. 2653-2662
    • Smith, G.M.1    Milton, E.J.2
  • 39
    • 77953873721 scopus 로고    scopus 로고
    • Simulation of spatial sensor characteristics in the context of the EnMAP hyperspectral mission
    • Segl, K.; Guanter, L.; Kaufmann, H. Simulation of spatial sensor characteristics in the context of the EnMAP hyperspectral mission. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3046-3054.
    • (2010) IEEE Trans. Geosci. Remote Sens , vol.48 , pp. 3046-3054
    • Segl, K.1    Guanter, L.2    Kaufmann, H.3
  • 40
    • 67651151076 scopus 로고    scopus 로고
    • Simulation of optical remote sensing scenes with application to the EnMAP hyperspectral mission
    • Guanter, L.; Segl, K.; Kaufmann, H. Simulation of optical remote sensing scenes with application to the EnMAP hyperspectral mission. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2340-2351.
    • (2009) IEEE Trans. Geosci. Remote Sens , vol.47 , pp. 2340-2351
    • Guanter, L.1    Segl, K.2    Kaufmann, H.3
  • 41
    • 84945895828 scopus 로고    scopus 로고
    • (accessed on 7 May 2015)
    • Sentinel Online. Available online: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2_msi/resolutions/radio-metric (accessed on 7 May 2015).
  • 42
  • 45
    • 84879518968 scopus 로고    scopus 로고
    • Spectroscopy and hyperspectral imagery for monitoring summer barley
    • Jarmer, T. Spectroscopy and hyperspectral imagery for monitoring summer barley. Int. J. Remote Sens. 2013, 34, 6067-6078.
    • (2013) Int. J. Remote Sens , vol.34 , pp. 6067-6078
    • Jarmer, T.1
  • 46
    • 84855703310 scopus 로고    scopus 로고
    • Comparing canonical correlation analysis with partial least squares regression in estimating forest leaf area index with multitemporal landsat TM imagery
    • Pu, R. Comparing canonical correlation analysis with partial least squares regression in estimating forest leaf area index with multitemporal landsat TM imagery. GIScience Remote Sens. 2013, 49, 92-116.
    • (2013) GIScience Remote Sens , vol.49 , pp. 92-116
    • Pu, R.1
  • 47
    • 84943406365 scopus 로고    scopus 로고
    • Comparison of different regression models and validation techniques for the assessment of wheat leaf area index from hyperspectral data
    • in press
    • Siegmann, B.; Jarmer, T. Comparison of different regression models and validation techniques for the assessment of wheat leaf area index from hyperspectral data. Int. J. Remote Sens. 2015, in press.
    • (2015) Int. J. Remote Sens
    • Siegmann, B.1    Jarmer, T.2
  • 48
    • 84984286248 scopus 로고
    • A PLS kernel algorithm for data sets with many variables and fewer object. Part 1: Theory and algorithm
    • Rännar, S.; Geladi, P.; Lidgren, F.; Wold, S. A PLS kernel algorithm for data sets with many variables and fewer objects. Part 1: Theory and algorithm. J. Chemom. 1994, 8, 111-124.
    • (1994) J. Chemom , vol.8 , pp. 111-124
    • Rännar, S.1    Geladi, P.2    Lidgren, F.3    Wold, S.4
  • 49
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716-723.
    • (1974) IEEE Trans. Autom. Control , vol.19 , pp. 716-723
    • Akaike, H.1
  • 50
    • 85140937159 scopus 로고    scopus 로고
    • Application in analysis of soils
    • Roberts, C.A., Workman, J., Jr., Reeves, J.B., III, Eds., 1st ed.; American Society of Agronomy; Crop Science Society of America; Soil Science Society of America: Madison, WI, USA
    • Malley, D.F.; Martin, P.D.; Ben-Dor, E. Application in analysis of soils. In Near-Infrared Spectroscopy in Agriculture, 1st ed.; Roberts, C.A., Workman, J., Jr., Reeves, J.B., III, Eds.; American Society of Agronomy; Crop Science Society of America; Soil Science Society of America: Madison, WI, USA, 2004; pp. 729-783.
    • (2004) Near-Infrared Spectroscopy in Agriculture , pp. 729-783
    • Malley, D.F.1    Martin, P.D.2    Ben-Dor, E.3
  • 51
    • 0001392735 scopus 로고    scopus 로고
    • Implementation of near-infrared technology
    • Williams, P., Norris, K., Eds.; American Association of Cereal Chemists, 2nd ed.: St. Paul, MN, USA
    • Williams, P.C. Implementation of near-infrared technology. In Near-Infrared Technology in the Agricultural and Food Industries, 2nd ed.; Williams, P., Norris, K., Eds.; American Association of Cereal Chemists: St. Paul, MN, USA, 2001; pp. 145-169.
    • (2001) Near-Infrared Technology in the Agricultural and Food Industries , pp. 145-169
    • Williams, P.C.1
  • 52
    • 0036323232 scopus 로고    scopus 로고
    • The potential of near-infrared reflectance spectroscopy for soil analysis: A case study from the Riverine plain of South-Eastern Australia
    • Dunn, B.W.; Beecher, H.G.; Batten, G.D.; Ciavarella, S. The potential of near-infrared reflectance spectroscopy for soil analysis: A case study from the Riverine plain of South-Eastern Australia. Aust. J. Exp. Agric. 2002, 42, 607-614.
    • (2002) Aust. J. Exp. Agric , vol.42 , pp. 607-614
    • Dunn, B.W.1    Beecher, H.G.2    Batten, G.D.3    Ciavarella, S.4
  • 54
    • 0032109024 scopus 로고    scopus 로고
    • Processing of high spectral resolution reflectance data for the retrieval of canopy water content information
    • Rollin, M.E.; Milton, E.J. Processing of high spectral resolution reflectance data for the retrieval of canopy water content information. Remote Sens. Environ. 1998, 65, 86-92.
    • (1998) Remote Sens. Environ , vol.65 , pp. 86-92
    • Rollin, M.E.1    Milton, E.J.2
  • 55
    • 0009595036 scopus 로고    scopus 로고
    • Rectification and registration
    • Star, J.L., Estes, J.E., McGwire, K.C., Eds., 1st ed.; Cambridge University Press: Cambridge UK
    • Ehlers, M. Rectification and registration. In Integration of Remote Sensing and GIS, 1st ed.; Star, J.L., Estes, J.E., McGwire, K.C., Eds.; Cambridge University Press: Cambridge UK, 1997; pp. 13-36.
    • (1997) Integration of Remote Sensing and GIS , pp. 13-36
    • Ehlers, M.1
  • 56
    • 79958726593 scopus 로고    scopus 로고
    • High Resolution Image Data and GIS
    • Madden, M., Ed., 1st ed.; American Society for Photogrammetry and Remote Sensing: Bethesda, MD, USA
    • Ehlers, M.; Jacobsen, K.; Schiewe, J. High Resolution Image Data and GIS. In ASPRS Manual of GIS, 1st ed.; Madden, M., Ed.; American Society for Photogrammetry and Remote Sensing: Bethesda, MD, USA, 2009; pp. 721-777.
    • (2009) ASPRS Manual of GIS , pp. 721-777
    • Ehlers, M.1    Jacobsen, K.2    Schiewe, J.3
  • 57
    • 84945946496 scopus 로고    scopus 로고
    • (accessed on 7 May 2015)
    • Landsat Science. Available online: http://landsat.gsfc.nasa.gov/?p=5771 (accessed on 7 May 2015).
  • 58
    • 84945909802 scopus 로고    scopus 로고
    • (accessed on 7 May 2015)
    • SPOT 6 SPOT 7 Technical Sheet. Available online: http://www2.geo-airbusds.com/files/pmedia/public/r12317_9_spot6-7_technical_sheet.pdf (accessed on 7 May 2015).
  • 59
    • 63949083045 scopus 로고    scopus 로고
    • Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors
    • Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893-903.
    • (2009) Remote Sens. Environ , vol.113 , pp. 893-903
    • Chander, G.1    Markham, B.L.2    Helder, D.L.3
  • 60
    • 84945925345 scopus 로고    scopus 로고
    • (accessed on 13 May 2015)
    • Black Bridge Imagery Products. Available online: http://www.blackbridge.com/geomatics/products/rapideye.html (accessed on 13 May 2015).


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.