메뉴 건너뛰기




Volumn 7, Issue 42, 2015, Pages 23685-23693

Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations

Author keywords

electrochemical stability; first principles calculations; lithium ionic conductor; passivation; solid electrolyte; solid electrolyte interphases

Indexed keywords

CALCULATIONS; DECOMPOSITION; ELECTRIC BATTERIES; ELECTRODES; ELECTROLYTES; INTERFACE STATES; INTERFACES (MATERIALS); IONIC CONDUCTION IN SOLIDS; LITHIUM; LITHIUM-ION BATTERIES; PASSIVATION; POTENTIOMETRIC SENSORS; STABILITY; THERMOANALYSIS;

EID: 84945893757     PISSN: 19448244     EISSN: 19448252     Source Type: Journal    
DOI: 10.1021/acsami.5b07517     Document Type: Article
Times cited : (1487)

References (51)
  • 2
    • 84872706273 scopus 로고    scopus 로고
    • Progress and Prospective of Solid-State Lithium Batteries
    • Takada, K. Progress and Prospective of Solid-State Lithium Batteries Acta Mater. 2013, 61, 759-770 10.1016/j.actamat.2012.10.034
    • (2013) Acta Mater. , vol.61 , pp. 759-770
    • Takada, K.1
  • 3
    • 84893028915 scopus 로고    scopus 로고
    • A Sulphide Lithium Super Ion Conductor Is Superior to Liquid Ion Conductors for Use in Rechargeable Batteries
    • Seino, Y.; Ota, T.; Takada, K.; Hayashi, A.; Tatsumisago, M. A Sulphide Lithium Super Ion Conductor Is Superior to Liquid Ion Conductors for Use in Rechargeable Batteries Energy Environ. Sci. 2014, 7, 627-631 10.1039/C3EE41655K
    • (2014) Energy Environ. Sci. , vol.7 , pp. 627-631
    • Seino, Y.1    Ota, T.2    Takada, K.3    Hayashi, A.4    Tatsumisago, M.5
  • 5
    • 84927630338 scopus 로고    scopus 로고
    • Fast Solid-State Li Ion Conducting Garnet-Type Structure Metal Oxides for Energy Storage
    • Thangadurai, V.; Pinzaru, D.; Narayanan, S.; Baral, A. K. Fast Solid-State Li Ion Conducting Garnet-Type Structure Metal Oxides for Energy Storage J. Phys. Chem. Lett. 2015, 6, 292-299 10.1021/jz501828v
    • (2015) J. Phys. Chem. Lett. , vol.6 , pp. 292-299
    • Thangadurai, V.1    Pinzaru, D.2    Narayanan, S.3    Baral, A.K.4
  • 6
    • 84886092166 scopus 로고    scopus 로고
    • An Artificial Solid Electrolyte Interphase Enables the Use of a LiNi0.5Mn1.5O4 5 V Cathode with Conventional Electrolytes
    • Li, J.; Baggetto, L.; Martha, S. K.; Veith, G. M.; Nanda, J.; Liang, C.; Dudney, N. J. An Artificial Solid Electrolyte Interphase Enables the Use of a LiNi0.5Mn1.5O4 5 V Cathode with Conventional Electrolytes Adv. Energy Mater. 2013, 3, 1275-1278 10.1002/aenm201300378
    • (2013) Adv. Energy Mater. , vol.3 , pp. 1275-1278
    • Li, J.1    Baggetto, L.2    Martha, S.K.3    Veith, G.M.4    Nanda, J.5    Liang, C.6    Dudney, N.J.7
  • 7
    • 84923368018 scopus 로고    scopus 로고
    • Solid Electrolyte: The Key for High-Voltage Lithium Batteries
    • Li, J.; Ma, C.; Chi, M.; Liang, C.; Dudney, N. J. Solid Electrolyte: The Key for High-Voltage Lithium Batteries Adv. Energy Mater. 2015, 5, 1401408 10.1002/aenm.201401408
    • (2015) Adv. Energy Mater. , vol.5 , pp. 1401408
    • Li, J.1    Ma, C.2    Chi, M.3    Liang, C.4    Dudney, N.J.5
  • 9
    • 13244268361 scopus 로고    scopus 로고
    • Li6ALa2Ta2O12 (a = Sr, Ba): Novel Garnet-Like Oxides for Fast Lithium Ion Conduction
    • Thangadurai, V.; Weppner, W. Li6ALa2Ta2O12 (a = Sr, Ba): Novel Garnet-Like Oxides for Fast Lithium Ion Conduction Adv. Funct. Mater. 2005, 15, 107-112 10.1002/adfm.200400044
    • (2005) Adv. Funct. Mater. , vol.15 , pp. 107-112
    • Thangadurai, V.1    Weppner, W.2
  • 10
    • 0031076663 scopus 로고    scopus 로고
    • A Stable Thin - Film Lithium Electrolyte: Lithium Phosphorus Oxynitride
    • Yu, X.; Bates, J. B.; Jellison, G. E.; Hart, F. X. A Stable Thin-Film Lithium Electrolyte: Lithium Phosphorus Oxynitride J. Electrochem. Soc. 1997, 144, 524-532 10.1149/1.1837443
    • (1997) J. Electrochem. Soc. , vol.144 , pp. 524-532
    • Yu, X.1    Bates, J.B.2    Jellison, G.E.3    Hart, F.X.4
  • 11
    • 84855666963 scopus 로고    scopus 로고
    • First Principles Study of the Li10GeP2S12 Lithium Super Ionic Conductor Material
    • Mo, Y.; Ong, S. P.; Ceder, G. First Principles Study of the Li10GeP2S12 Lithium Super Ionic Conductor Material Chem. Mater. 2012, 24, 15-17 10.1021/cm203303y
    • (2012) Chem. Mater. , vol.24 , pp. 15-17
    • Mo, Y.1    Ong, S.P.2    Ceder, G.3
  • 12
    • 85027945964 scopus 로고    scopus 로고
    • A Battery Made from a Single Material
    • Han, F.; Gao, T.; Zhu, Y.; Gaskell, K. J.; Wang, C. A Battery Made from a Single Material Adv. Mater. 2015, 27, 3473-3483 10.1002/adma.201500180
    • (2015) Adv. Mater. , vol.27 , pp. 3473-3483
    • Han, F.1    Gao, T.2    Zhu, Y.3    Gaskell, K.J.4    Wang, C.5
  • 13
    • 84939950757 scopus 로고    scopus 로고
    • Interface Reactions between LiPON and Lithium Studied by in-Situ X-Ray Photoemission
    • Schwöbel, A.; Hausbrand, R.; Jaegermann, W. Interface Reactions between LiPON and Lithium Studied by in-Situ X-Ray Photoemission Solid State Ionics 2015, 273, 51-54 10.1016/j.ssi.2014.10.017
    • (2015) Solid State Ionics , vol.273 , pp. 51-54
    • Schwöbel, A.1    Hausbrand, R.2    Jaegermann, W.3
  • 14
    • 84934986446 scopus 로고    scopus 로고
    • Interphase Formation on Lithium Solid Electrolytes-an in Situ Approach to Study Interfacial Reactions by Photoelectron Spectroscopy
    • Wenzel, S.; Leichtweiss, T.; Krüger, D.; Sann, J.; Janek, J. Interphase Formation on Lithium Solid Electrolytes-an in Situ Approach to Study Interfacial Reactions by Photoelectron Spectroscopy Solid State Ionics 2015, 278, 98-105 10.1016/j.ssi.2015.06.001
    • (2015) Solid State Ionics , vol.278 , pp. 98-105
    • Wenzel, S.1    Leichtweiss, T.2    Krüger, D.3    Sann, J.4    Janek, J.5
  • 15
    • 84886065449 scopus 로고    scopus 로고
    • Degradation of NASICON-Type Materials in Contact with Lithium Metal: Formation of Mixed Conducting Interphases (MCI) on Solid Electrolytes
    • Hartmann, P.; Leichtweiss, T.; Busche, M. R.; Schneider, M.; Reich, M.; Sann, J.; Adelhelm, P.; Janek, J. Degradation of NASICON-Type Materials in Contact with Lithium Metal: Formation of Mixed Conducting Interphases (MCI) on Solid Electrolytes J. Phys. Chem. C 2013, 117, 21064-21074 10.1021/jp4051275
    • (2013) J. Phys. Chem. C , vol.117 , pp. 21064-21074
    • Hartmann, P.1    Leichtweiss, T.2    Busche, M.R.3    Schneider, M.4    Reich, M.5    Sann, J.6    Adelhelm, P.7    Janek, J.8
  • 16
    • 76249102823 scopus 로고    scopus 로고
    • Interfacial Observation between LiCoO2 Electrode and Li2S-P2S5 Solid Electrolytes of All-Solid-State Lithium Secondary Batteries Using Transmission Electron Microscopy
    • Sakuda, A.; Hayashi, A.; Tatsumisago, M. Interfacial Observation between LiCoO2 Electrode and Li2S-P2S5 Solid Electrolytes of All-Solid-State Lithium Secondary Batteries Using Transmission Electron Microscopy Chem. Mater. 2010, 22, 949-956 10.1021/cm901819c
    • (2010) Chem. Mater. , vol.22 , pp. 949-956
    • Sakuda, A.1    Hayashi, A.2    Tatsumisago, M.3
  • 18
    • 33646343022 scopus 로고    scopus 로고
    • Oxidation Energies of Transition Metal Oxides within the GGA+U Framework
    • Wang, L.; Maxisch, T.; Ceder, G. Oxidation Energies of Transition Metal Oxides within the GGA+U Framework Phys. Rev. B: Condens. Matter Mater. Phys. 2006, 73, 195107 10.1103/PhysRevB.73.195107
    • (2006) Phys. Rev. B: Condens. Matter Mater. Phys. , vol.73 , pp. 195107
    • Wang, L.1    Maxisch, T.2    Ceder, G.3
  • 21
    • 42449163949 scopus 로고    scopus 로고
    • Li-Fe-P-O2 Phase Diagram from First Principles Calculations
    • Ong, S. P.; Wang, L.; Kang, B.; Ceder, G. Li-Fe-P-O2 Phase Diagram from First Principles Calculations Chem. Mater. 2008, 20, 1798-1807 10.1021/cm702327g
    • (2008) Chem. Mater. , vol.20 , pp. 1798-1807
    • Ong, S.P.1    Wang, L.2    Kang, B.3    Ceder, G.4
  • 24
    • 0035447282 scopus 로고    scopus 로고
    • Ionic Conductivity, Lithium Insertion and Extraction of Lanthanum Lithium Titanate
    • Chen, C. H.; Amine, K. Ionic Conductivity, Lithium Insertion and Extraction of Lanthanum Lithium Titanate Solid State Ionics 2001, 144, 51-57 10.1016/S0167-2738(01)00884-0
    • (2001) Solid State Ionics , vol.144 , pp. 51-57
    • Chen, C.H.1    Amine, K.2
  • 25
    • 0142185824 scopus 로고    scopus 로고
    • Lithium Lanthanum Titanates: A Review
    • Stramare, S.; Thangadurai, V.; Weppner, W. Lithium Lanthanum Titanates: A Review Chem. Mater. 2003, 15, 3974-3990 10.1021/cm0300516
    • (2003) Chem. Mater. , vol.15 , pp. 3974-3990
    • Stramare, S.1    Thangadurai, V.2    Weppner, W.3
  • 26
    • 77954243122 scopus 로고    scopus 로고
    • Lithium Storage Capability of Lithium Ion Conductor Li1.5Al0.5Ge1.5(PO4)3
    • Feng, J. K.; Lu, L.; Lai, M. O. Lithium Storage Capability of Lithium Ion Conductor Li1.5Al0.5Ge1.5(PO4)3 J. Alloys Compd. 2010, 501, 255-258 10.1016/j.jallcom.2010.04.084
    • (2010) J. Alloys Compd. , vol.501 , pp. 255-258
    • Feng, J.K.1    Lu, L.2    Lai, M.O.3
  • 28
    • 67349207720 scopus 로고    scopus 로고
    • Inorganic Solid Li Ion Conductors: An Overview
    • Knauth, P. Inorganic Solid Li Ion Conductors: An Overview Solid State Ionics 2009, 180, 911-916 10.1016/j.ssi.2009.03.022
    • (2009) Solid State Ionics , vol.180 , pp. 911-916
    • Knauth, P.1
  • 29
    • 0742285684 scopus 로고    scopus 로고
    • Chemical Stability Enhancement of Lithium Conducting Solid Electrolyte Plates Using Sputtered LiPON Thin Films
    • West, W. C.; Whitacre, J. F.; Lim, J. R. Chemical Stability Enhancement of Lithium Conducting Solid Electrolyte Plates Using Sputtered LiPON Thin Films J. Power Sources 2004, 126, 134-138 10.1016/j.jpowsour.2003.08.030
    • (2004) J. Power Sources , vol.126 , pp. 134-138
    • West, W.C.1    Whitacre, J.F.2    Lim, J.R.3
  • 31
    • 84884859890 scopus 로고    scopus 로고
    • Structures, Li+ Mobilities, and Interfacial Properties of Solid Electrolytes Li3PS4 and Li3PO4 from First Principles
    • Lepley, N. D.; Holzwarth, N. A. W.; Du, Y. A. Structures, Li+ Mobilities, and Interfacial Properties of Solid Electrolytes Li3PS4 and Li3PO4 from First Principles Phys. Rev. B: Condens. Matter Mater. Phys. 2013, 88, 104103 10.1103/PhysRevB.88.104103
    • (2013) Phys. Rev. B: Condens. Matter Mater. Phys. , vol.88 , pp. 104103
    • Lepley, N.D.1    Holzwarth, N.A.W.2    Du, Y.A.3
  • 32
    • 84929379589 scopus 로고    scopus 로고
    • How Voltage Drops Are Manifested by Lithium Ion Configurations at Interfaces and in Thin Films on Battery Electrodes
    • Leung, K.; Leenheer, A. How Voltage Drops Are Manifested by Lithium Ion Configurations at Interfaces and in Thin Films on Battery Electrodes J. Phys. Chem. C 2015, 119, 10234-10246 10.1021/acs.jpcc.5b01643
    • (2015) J. Phys. Chem. C , vol.119 , pp. 10234-10246
    • Leung, K.1    Leenheer, A.2
  • 33
    • 84904630425 scopus 로고    scopus 로고
    • Space-Charge Layer Effect at Interface between Oxide Cathode and Sulfide Electrolyte in All-Solid-State Lithium-Ion Battery
    • Haruyama, J.; Sodeyama, K.; Han, L.; Takada, K.; Tateyama, Y. Space-Charge Layer Effect at Interface between Oxide Cathode and Sulfide Electrolyte in All-Solid-State Lithium-Ion Battery Chem. Mater. 2014, 26, 4248-4255 10.1021/cm5016959
    • (2014) Chem. Mater. , vol.26 , pp. 4248-4255
    • Haruyama, J.1    Sodeyama, K.2    Han, L.3    Takada, K.4    Tateyama, Y.5
  • 34
    • 0012721659 scopus 로고    scopus 로고
    • Fundamental Aspects of Electrochemical, Chemical and Electrostatic Potentials in Lithium Batteries
    • Julien, C. Stoynov, Z. Springer Netherlands: Dordrecht, The Netherlands, Chapter 20
    • Weppner, W., Fundamental Aspects of Electrochemical, Chemical and Electrostatic Potentials in Lithium Batteries. In Materials for Lithium-Ion Batteries; Julien, C.; Stoynov, Z., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2000; Chapter 20, pp 401-412.
    • (2000) Materials for Lithium-Ion Batteries , pp. 401-412
    • Weppner, W.1
  • 35
    • 77956208719 scopus 로고    scopus 로고
    • Compatibility of Li7La3Zr2O12 Solid Electrolyte to All-Solid-State Battery Using Li Metal Anode
    • Kotobuki, M.; Munakata, H.; Kanamura, K.; Sato, Y.; Yoshida, T. Compatibility of Li7La3Zr2O12 Solid Electrolyte to All-Solid-State Battery Using Li Metal Anode J. Electrochem. Soc. 2010, 157, A1076-A1079 10.1149/1.3474232
    • (2010) J. Electrochem. Soc. , vol.157 , pp. A1076-A1079
    • Kotobuki, M.1    Munakata, H.2    Kanamura, K.3    Sato, Y.4    Yoshida, T.5
  • 36
    • 84879934537 scopus 로고    scopus 로고
    • Chemical Stability of Cubic Li7La3Zr2O12 with Molten Lithium at Elevated Temperature
    • Wolfenstine, J.; Allen, J. L.; Read, J.; Sakamoto, J. Chemical Stability of Cubic Li7La3Zr2O12 with Molten Lithium at Elevated Temperature J. Mater. Sci. 2013, 48, 5846-5851 10.1007/s10853-013-7380-z
    • (2013) J. Mater. Sci. , vol.48 , pp. 5846-5851
    • Wolfenstine, J.1    Allen, J.L.2    Read, J.3    Sakamoto, J.4
  • 37
    • 84869402712 scopus 로고    scopus 로고
    • On the Mechanism of Nonaqueous Li-O2 Electrochemistry on C and Its Kinetic Overpotentials: Some Implications for Li-Air Batteries
    • McCloskey, B. D.; Scheffler, R.; Speidel, A.; Girishkumar, G.; Luntz, A. C. On the Mechanism of Nonaqueous Li-O2 Electrochemistry on C and Its Kinetic Overpotentials: Some Implications for Li-Air Batteries J. Phys. Chem. C 2012, 116, 23897-23905 10.1021/jp306680f
    • (2012) J. Phys. Chem. C , vol.116 , pp. 23897-23905
    • McCloskey, B.D.1    Scheffler, R.2    Speidel, A.3    Girishkumar, G.4    Luntz, A.C.5
  • 38
    • 33749005417 scopus 로고    scopus 로고
    • Enhancement of the High-Rate Capability of Solid-State Lithium Batteries by Nanoscale Interfacial Modification
    • Ohta, N.; Takada, K.; Zhang, L.; Ma, R.; Osada, M.; Sasaki, T. Enhancement of the High-Rate Capability of Solid-State Lithium Batteries by Nanoscale Interfacial Modification Adv. Mater. 2006, 18, 2226-2229 10.1002/adma.200502604
    • (2006) Adv. Mater. , vol.18 , pp. 2226-2229
    • Ohta, N.1    Takada, K.2    Zhang, L.3    Ma, R.4    Osada, M.5    Sasaki, T.6
  • 39
    • 79958862709 scopus 로고    scopus 로고
    • Improvement of Electrochemical Performance of All-Solid-State Lithium Secondary Batteries by Surface Modification of LiMn2O4 Positive Electrode
    • Kitaura, H.; Hayashi, A.; Tadanaga, K.; Tatsumisago, M. Improvement of Electrochemical Performance of All-Solid-State Lithium Secondary Batteries by Surface Modification of LiMn2O4 Positive Electrode Solid State Ionics 2011, 192, 304-307 10.1016/j.ssi.2010.08.019
    • (2011) Solid State Ionics , vol.192 , pp. 304-307
    • Kitaura, H.1    Hayashi, A.2    Tadanaga, K.3    Tatsumisago, M.4
  • 41
    • 34250175768 scopus 로고    scopus 로고
    • LiNbO3-Coated LiCoO2 as Cathode Material for All Solid-State Lithium Secondary Batteries
    • Ohta, N.; Takada, K.; Sakaguchi, I.; Zhang, L.; Ma, R.; Fukuda, K.; Osada, M.; Sasaki, T. LiNbO3-Coated LiCoO2 as Cathode Material for All Solid-State Lithium Secondary Batteries Electrochem. Commun. 2007, 9, 1486-1490 10.1016/j.elecom.2007.02.008
    • (2007) Electrochem. Commun. , vol.9 , pp. 1486-1490
    • Ohta, N.1    Takada, K.2    Sakaguchi, I.3    Zhang, L.4    Ma, R.5    Fukuda, K.6    Osada, M.7    Sasaki, T.8
  • 42
    • 84897551213 scopus 로고    scopus 로고
    • In-Situ Li7La3Zr2O12/LiCoO2 Interface Modification for Advanced All-Solid-State Battery
    • Kato, T.; Hamanaka, T.; Yamamoto, K.; Hirayama, T.; Sagane, F.; Motoyama, M.; Iriyama, Y. In-Situ Li7La3Zr2O12/LiCoO2 Interface Modification for Advanced All-Solid-State Battery J. Power Sources 2014, 260, 292-298 10.1016/j.jpowsour.2014.02.102
    • (2014) J. Power Sources , vol.260 , pp. 292-298
    • Kato, T.1    Hamanaka, T.2    Yamamoto, K.3    Hirayama, T.4    Sagane, F.5    Motoyama, M.6    Iriyama, Y.7
  • 43
    • 36148935645 scopus 로고    scopus 로고
    • Improvement of High-Rate Performance of All-Solid-State Lithium Secondary Batteries Using LiCoO2 Coated with Li2O-SiO2 Glasses
    • Sakuda, A.; Kitaura, H.; Hayashi, A.; Tadanaga, K.; Tatsumisago, M. Improvement of High-Rate Performance of All-Solid-State Lithium Secondary Batteries Using LiCoO2 Coated with Li2O-SiO2 Glasses Electrochem. Solid-State Lett. 2008, 11, A1-A3 10.1149/1.2795837
    • (2008) Electrochem. Solid-State Lett. , vol.11 , pp. A1-A3
    • Sakuda, A.1    Kitaura, H.2    Hayashi, A.3    Tadanaga, K.4    Tatsumisago, M.5
  • 44
    • 33645739249 scopus 로고    scopus 로고
    • Electrochemical Characterizations of Commercial LiCoO2 Powders with Surface Modified by Li3PO4 Nanoparticles
    • Jin, Y.; Li, N.; Chen, C. H.; Wei, S. Q. Electrochemical Characterizations of Commercial LiCoO2 Powders with Surface Modified by Li3PO4 Nanoparticles Electrochem. Solid-State Lett. 2006, 9, A273-A276 10.1149/1.2188081
    • (2006) Electrochem. Solid-State Lett. , vol.9 , pp. A273-A276
    • Jin, Y.1    Li, N.2    Chen, C.H.3    Wei, S.Q.4
  • 47
    • 76249131385 scopus 로고    scopus 로고
    • Challenges for Rechargeable Li Batteries
    • Goodenough, J. B.; Kim, Y. Challenges for Rechargeable Li Batteries Chem. Mater. 2010, 22, 587-603 10.1021/cm901452z
    • (2010) Chem. Mater. , vol.22 , pp. 587-603
    • Goodenough, J.B.1    Kim, Y.2
  • 48
    • 84900794861 scopus 로고    scopus 로고
    • Pushing the Theoretical Limit of Li-CFx Batteries: A Tale of Bifunctional Electrolyte
    • Rangasamy, E.; Li, J.; Sahu, G.; Dudney, N.; Liang, C. Pushing the Theoretical Limit of Li-CFx Batteries: A Tale of Bifunctional Electrolyte J. Am. Chem. Soc. 2014, 136, 6874-6877 10.1021/ja5026358
    • (2014) J. Am. Chem. Soc. , vol.136 , pp. 6874-6877
    • Rangasamy, E.1    Li, J.2    Sahu, G.3    Dudney, N.4    Liang, C.5
  • 50
    • 36749108492 scopus 로고
    • Ionic Conductivity in Li3N Single Crystals
    • Alpen, U. v.; Rabenau, A.; Talat, G. H. Ionic Conductivity in Li3N Single Crystals Appl. Phys. Lett. 1977, 30, 621-623 10.1063/1.89283
    • (1977) Appl. Phys. Lett. , vol.30 , pp. 621-623
    • Alpen, U.V.1    Rabenau, A.2    Talat, G.H.3
  • 51
    • 0024647168 scopus 로고
    • Preparation, Structure and Ionic Conductivity of Lithium Phosphide
    • Nazri, G. Preparation, Structure and Ionic Conductivity of Lithium Phosphide Solid State Ionics 1989, 34, 97-102 10.1016/0167-2738(89)90438-4
    • (1989) Solid State Ionics , vol.34 , pp. 97-102
    • Nazri, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.