메뉴 건너뛰기




Volumn , Issue , 1971, Pages 144-152

The SAC-1 system: An introduction and survey

Author keywords

[No Author keywords available]

Indexed keywords

EFFICIENCY; RATIONAL FUNCTIONS; SURVEYS;

EID: 84945708095     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (35)

References (40)
  • 1
    • 84914336436 scopus 로고
    • A programming language for information processing on automatic data processing systems
    • American Standards Association, Oct
    • American Standards Association, A Programming Language for Information Processing on Automatic Data Processing Systems, Comm. A.C.M., Vol. 7, No. 10 (Oct. 1964), pp. 591-625.
    • (1964) Comm. A.C.M. , vol.7 , Issue.10 , pp. 591-625
  • 2
    • 84968497774 scopus 로고
    • Sylvester's identity and multistep integer-preserving gaussian elimination
    • July
    • Bareiss, E. H., Sylvester's Identity and Multistep Integer-Preserving Gaussian Elimination, Math of Comp., Vol. 22, No. 103 (July 1968), pp. 565-578.
    • (1968) Math of Comp. , vol.22 , Issue.103 , pp. 565-578
    • Bareiss, E.H.1
  • 3
    • 84944812247 scopus 로고
    • Factoring polynomials over finite fields
    • Berlekamp, E. R., Factoring Polynomials over Finite Fields, Bell System Tech. J., Vol. 46 (1967), pp. 1853-1859.
    • (1967) Bell System Tech. J. , vol.46 , pp. 1853-1859
    • Berlekamp, E.R.1
  • 5
    • 79958201678 scopus 로고
    • The ALPAK system for non-numerical algebra on a digital computer - I: Polynomials in several variables and truncated power series with polynomial coefficients
    • Sept
    • Brown, W. S., The ALPAK System for Non-numerical Algebra on a Digital Computer - I: Polynomials in Several Variables and Truncated Power Series with Polynomial Coefficients, Bell System Tech. J., Vol. 42, No. 3 (Sept. 1963), pp. 2081-2120.
    • (1963) Bell System Tech. J. , vol.42 , Issue.3 , pp. 2081-2120
    • Brown, W.S.1
  • 7
    • 84945708437 scopus 로고
    • A method for the overlapping and erasure of lists
    • Dec
    • Collins, George E., A Method for the Overlapping and Erasure of Lists, Comm. A.C.M., Vol. 3, No. 12 (Dec. 1960), pp. 655-657.
    • (1960) Comm. A.C.M. , vol.3 , Issue.12 , pp. 655-657
    • Collins, G.E.1
  • 8
    • 84915523417 scopus 로고
    • PM, A system for polynomial manipulation
    • Aug
    • Collins, George E., PM, A System for Polynomial Manipulation, Comm. A.C.M., Vol. 9, No. 8 (Aug. 1966), pp. 578-589.
    • (1966) Comm. A.C.M. , vol.9 , Issue.8 , pp. 578-589
    • Collins, G.E.1
  • 9
    • 84945709818 scopus 로고
    • Subresultants and reduced polynomial remainder sequences
    • Jan
    • Collins, George E., Subresultants and Reduced Polynomial Remainder Sequences, Jour. A.C.M., Vol. 14, No. 1 (Jan. 1967), pp. 128-142.
    • (1967) Jour. A.C.M. , vol.14 , Issue.1 , pp. 128-142
    • Collins, G.E.1
  • 14
    • 84968491427 scopus 로고
    • Computing multiplicative inverses in GF(p)
    • Jan
    • Collins, George E., Computing Multiplicative Inverses in GF(p), Math. Comp., Vol. 23, No. 105 (Jan. 1969), pp. 197-200.
    • (1969) Math. Comp. , vol.23 , Issue.105 , pp. 197-200
    • Collins, G.E.1
  • 15
    • 85061092374 scopus 로고
    • Algorithmic approaches to symbolic integration and simplification (summary of the 1968 FJCC panel session)
    • July
    • Collins, George E., Algorithmic Approaches to Symbolic Integration and Simplification (Summary of the 1968 FJCC Panel Session), SIGSAM Bulletin, No. 12 (July 1968), pp. 5-16.
    • (1968) SIGSAM Bulletin , Issue.12 , pp. 5-16
    • Collins, G.E.1
  • 17
    • 33747660174 scopus 로고
    • Computing time analyses for some arithmetic and algebraic algorithms
    • Robert G. Tobey, ed.), IBM Federal Systems Center, June
    • Collins, George E., Computing Time Analyses for Some Arithmetic and Algebraic Algorithms, Proceedings of the 1968 Summer Institute on Symbolic Mathematical Computation (Robert G. Tobey, ed.), IBM Federal Systems Center, June 1969, pp. 195-232.
    • (1969) Proceedings of the 1968 Summer Institute on Symbolic Mathematical Computation , pp. 195-232
    • Collins, G.E.1
  • 25
  • 26
    • 79955464384 scopus 로고
    • A subroutine for computations with rational numbers
    • Jan
    • Henrici, P., A Subroutine for Computations with Rational Numbers, Jour. A.C.M., Vol. 3, No. 1 (Jan. 1956), pp. 6-9.
    • (1956) Jour. A.C.M. , vol.3 , Issue.1 , pp. 6-9
    • Henrici, P.1
  • 29
    • 85061092451 scopus 로고
    • Tricks for improving Kronecker's polynomial factoring algorithm
    • Johnson, S. C., Tricks for Improving Kronecker's Polynomial Factoring Algorithm, Bell Telephone Laboratories Report, 1966.
    • (1966) Bell Telephone Laboratories Report
    • Johnson, S.C.1
  • 30
    • 84915492720 scopus 로고
    • Symbolic factoring of polynomials in several variables
    • Aug
    • Jordan, D. E., R. Y. Cain, and L. C. Clapp, Symbolic Factoring of Polynomials in Several Variables, Comm. A.C.M., Vol. 9, No. 8 (Aug. 1966), pp. 638-643.
    • (1966) Comm. A.C.M. , vol.9 , Issue.8 , pp. 638-643
    • Jordan, D.E.1    Cain, R.Y.2    Clapp, L.C.3
  • 33
    • 84976779844 scopus 로고
    • Symbolic methods for the computer solution of linear equations with applications to flowgraphs
    • Robert G. Tobey, ed.), June IBM Federal Systems Center
    • Lipson, John D., Symbolic Methods for the Computer Solution of Linear Equations with Applications to Flowgraphs, Proceedings of the 1968 Summer Institute on Symbolic Mathematical Computation (Robert G. Tobey, ed.), June 1969, IBM Federal Systems Center, pp. 233-303.
    • (1969) Proceedings of the 1968 Summer Institute on Symbolic Mathematical Computation , pp. 233-303
    • Lipson, J.D.1
  • 36
    • 0011692497 scopus 로고    scopus 로고
    • University of Wisconsin Computer Sciences Department Ph.D. Thesis. In preparation
    • Musser, David R., Algorithms for Polynomial Factorization. University of Wisconsin Computer Sciences Department Ph.D. Thesis. In preparation.
    • Algorithms for Polynomial Factorization
    • Musser, D.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.