-
1
-
-
0042968726
-
Surface plasmon subwavelength optics
-
COI: 1:CAS:528:DC%2BD3sXmt1ant7g%3D
-
Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830
-
(2003)
Nature
, vol.424
, pp. 824-830
-
-
Barnes, W.L.1
Dereux, A.2
Ebbesen, T.W.3
-
2
-
-
30844454068
-
Plasmonics: merging photonics and electronics at nanoscale dimensions
-
COI: 1:CAS:528:DC%2BD28XkvVWrtQ%3D%3D
-
Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758):189–193
-
(2006)
Science
, vol.311
, Issue.5758
, pp. 189-193
-
-
Ozbay, E.1
-
3
-
-
77951611376
-
The case for plasmonics
-
COI: 1:CAS:528:DC%2BC3cXls1Ort70%3D
-
Brongersma ML, Shalaev VM (2010) The case for plasmonics. Science 328:440–441
-
(2010)
Science
, vol.328
, pp. 440-441
-
-
Brongersma, M.L.1
Shalaev, V.M.2
-
4
-
-
79958797681
-
Localized surface plasmon resonance sensors
-
COI: 1:CAS:528:DC%2BC3MXntVenuro%3D
-
Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111(6):3828–3857
-
(2011)
Chem Rev
, vol.111
, Issue.6
, pp. 3828-3857
-
-
Mayer, K.M.1
Hafner, J.H.2
-
5
-
-
0000107007
-
Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering
-
COI: 1:CAS:528:DyaK1MXnsVeis7w%3D
-
Xu H, Bjerneld EJ, Käll M, Börjesson L (1999) Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys Rev Lett 83:4357–4360
-
(1999)
Phys Rev Lett
, vol.83
, pp. 4357-4360
-
-
Xu, H.1
Bjerneld, E.J.2
Käll, M.3
Börjesson, L.4
-
6
-
-
77949662685
-
Shell-isolated nanoparticle-enhanced Raman spectroscopy
-
COI: 1:CAS:528:DC%2BC3cXjsFSqurc%3D
-
Li JF, Huang YF, Ding Y, Yang ZL, Li SB, Zhou XS et al (2010) Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464(7287):392–395
-
(2010)
Nature
, vol.464
, Issue.7287
, pp. 392-395
-
-
Li, J.F.1
Huang, Y.F.2
Ding, Y.3
Yang, Z.L.4
Li, S.B.5
Zhou, X.S.6
-
7
-
-
84907351925
-
Nanowire-supported plasmonic waveguide for remote excitation of surface-enhanced Raman scattering
-
COI: 1:CAS:528:DC%2BC2cXhsFagtb3O
-
Huang YZ, Fang YR, Zhang Z, Zhu L, Sun MT (2014) Nanowire-supported plasmonic waveguide for remote excitation of surface-enhanced Raman scattering. Light Sci Appl 3(8):e199. doi:10.1038/lsa.2014.80
-
(2014)
Light Sci Appl
, vol.3
, Issue.8
, pp. e199
-
-
Huang, Y.Z.1
Fang, Y.R.2
Zhang, Z.3
Zhu, L.4
Sun, M.T.5
-
8
-
-
84866103322
-
Nanoplasmonic in situ spectroscopy for catalysis applications
-
COI: 1:CAS:528:DC%2BC38Xht1ajsrzL
-
Langhammer C, Larsson EM (2012) Nanoplasmonic in situ spectroscopy for catalysis applications. ACS Catal 2(9):2036–2045
-
(2012)
ACS Catal
, vol.2
, Issue.9
, pp. 2036-2045
-
-
Langhammer, C.1
Larsson, E.M.2
-
9
-
-
79954487252
-
Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed
-
COI: 1:CAS:528:DC%2BC3MXjt1Git70%3D
-
Zhang S, Bao K, Halas NJ, Xu H, Nordlander P (2011) Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. Nano Lett 11(4):1657–1663
-
(2011)
Nano Lett
, vol.11
, Issue.4
, pp. 1657-1663
-
-
Zhang, S.1
Bao, K.2
Halas, N.J.3
Xu, H.4
Nordlander, P.5
-
10
-
-
84942367675
-
Fano resonance properties of gold nanocrescent arrays
-
Liao Z, Zhou B, Huang Y, Li S, Wang S, Wen W (2014) Fano resonance properties of gold nanocrescent arrays. Appl Opt 53(28):6431–6434
-
(2014)
Appl Opt
, vol.53
, Issue.28
, pp. 6431-6434
-
-
Liao, Z.1
Zhou, B.2
Huang, Y.3
Li, S.4
Wang, S.5
Wen, W.6
-
11
-
-
74849126857
-
Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces
-
COI: 1:CAS:528:DC%2BD1MXhs1SmsbzN
-
Tong L, Miljkovic VD, Kall M (2010) Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces. Nano Lett 10(1):268–273
-
(2010)
Nano Lett
, vol.10
, Issue.1
, pp. 268-273
-
-
Tong, L.1
Miljkovic, V.D.2
Kall, M.3
-
12
-
-
84893471979
-
Ultrasensitive size-selection of plasmonic nanoparticles by Fano interference optical force
-
COI: 1:CAS:528:DC%2BC3sXhvFSru7zO
-
Li Z, Zhang S, Tong L, Wang P, Dong B, Xu H (2014) Ultrasensitive size-selection of plasmonic nanoparticles by Fano interference optical force. ACS Nano 8:701–708
-
(2014)
ACS Nano
, vol.8
, pp. 701-708
-
-
Li, Z.1
Zhang, S.2
Tong, L.3
Wang, P.4
Dong, B.5
Xu, H.6
-
13
-
-
80053141483
-
Electrically controlled nonlinear generation of light with plasmonics
-
COI: 1:CAS:528:DC%2BC3MXhtFyqur3E
-
Cai W, Vasudev AP, Brongersma ML (2011) Electrically controlled nonlinear generation of light with plasmonics. Science 333(6050):1720–1723
-
(2011)
Science
, vol.333
, Issue.6050
, pp. 1720-1723
-
-
Cai, W.1
Vasudev, A.P.2
Brongersma, M.L.3
-
14
-
-
84880157152
-
Enhanced second harmonic generation by photonic-plasmonic Fano-type coupling in nanoplasmonic arrays
-
COI: 1:CAS:528:DC%2BC3sXhtVWhtbzP
-
Walsh GF, Dal NL (2013) Enhanced second harmonic generation by photonic-plasmonic Fano-type coupling in nanoplasmonic arrays. Nano Lett 13(7):3111–3117
-
(2013)
Nano Lett
, vol.13
, Issue.7
, pp. 3111-3117
-
-
Walsh, G.F.1
Dal, N.L.2
-
15
-
-
84887839829
-
Wavelength tunable single nanowire lasers based on surface plasmon polariton enhanced Burstein-Moss effect
-
COI: 1:CAS:528:DC%2BC3sXhs1CgsLjI
-
Liu X, Zhang Q, Yip JN, Xiong Q, Sum TC (2013) Wavelength tunable single nanowire lasers based on surface plasmon polariton enhanced Burstein-Moss effect. Nano Lett 13:5336–5343
-
(2013)
Nano Lett
, vol.13
, pp. 5336-5343
-
-
Liu, X.1
Zhang, Q.2
Yip, J.N.3
Xiong, Q.4
Sum, T.C.5
-
16
-
-
79961222948
-
Spotlight on plasmon lasers
-
COI: 1:CAS:528:DC%2BC3MXhtFeis7zP
-
Sorger VJ, Zhang X (2011) Spotlight on plasmon lasers. Science 333(6043):709–710
-
(2011)
Science
, vol.333
, Issue.6043
, pp. 709-710
-
-
Sorger, V.J.1
Zhang, X.2
-
17
-
-
84869800978
-
Noble metal nanowires: from plasmon waveguides to passive and active devices
-
COI: 1:CAS:528:DC%2BC38XhsFOntLjN
-
Lal S, Hafner JH, Halas NJ, Link S, Nordlander P (2012) Noble metal nanowires: from plasmon waveguides to passive and active devices. Acc Chem Res 45:1887–1895
-
(2012)
Acc Chem Res
, vol.45
, pp. 1887-1895
-
-
Lal, S.1
Hafner, J.H.2
Halas, N.J.3
Link, S.4
Nordlander, P.5
-
18
-
-
80051971608
-
Chiral surface plasmon polaritons on metallic nanowires
-
Zhang S, Wei H, Bao K, Håkanson U, Halas NJ, Nordlander P et al (2011) Chiral surface plasmon polaritons on metallic nanowires. Phys Rev Lett 107(9):096801
-
(2011)
Phys Rev Lett
, vol.107
, Issue.9
, pp. 096801
-
-
Zhang, S.1
Wei, H.2
Bao, K.3
Håkanson, U.4
Halas, N.J.5
Nordlander, P.6
-
19
-
-
79851490682
-
Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks
-
COI: 1:CAS:528:DC%2BC3cXhs1SrsbzI
-
Wei H, Li Z, Tian X, Wang Z, Cong F, Liu N et al (2011) Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks. Nano Lett 11(2):471–475
-
(2011)
Nano Lett
, vol.11
, Issue.2
, pp. 471-475
-
-
Wei, H.1
Li, Z.2
Tian, X.3
Wang, Z.4
Cong, F.5
Liu, N.6
-
20
-
-
79955759367
-
Hot electrons cross boundaries
-
COI: 1:CAS:528:DC%2BC3MXmsFyhuro%3D
-
Moskovits M (2011) Hot electrons cross boundaries. Science 332(6030):676–677
-
(2011)
Science
, vol.332
, Issue.6030
, pp. 676-677
-
-
Moskovits, M.1
-
21
-
-
79955755424
-
Photodetection with active optical antennas
-
COI: 1:CAS:528:DC%2BC3MXlsVKkur0%3D
-
Knight MW, Sobhani H, Nordlander P, Halas NJ (2011) Photodetection with active optical antennas. Science 332(6030):702–704
-
(2011)
Science
, vol.332
, Issue.6030
, pp. 702-704
-
-
Knight, M.W.1
Sobhani, H.2
Nordlander, P.3
Halas, N.J.4
-
22
-
-
84893213030
-
Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices
-
COI: 1:CAS:528:DC%2BC2cXhsFehtbc%3D
-
Clavero C (2014) Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat Photonics 8(2):95–103
-
(2014)
Nat Photonics
, vol.8
, Issue.2
, pp. 95-103
-
-
Clavero, C.1
-
23
-
-
84876391675
-
Plasmonics: harvest season for hot electrons
-
COI: 1:CAS:528:DC%2BC3sXltFClsbs%3D
-
Chalabi H, Brongersma ML (2013) Plasmonics: harvest season for hot electrons. Nat Nanotechnol 8(4):229–230
-
(2013)
Nat Nanotechnol
, vol.8
, Issue.4
, pp. 229-230
-
-
Chalabi, H.1
Brongersma, M.L.2
-
24
-
-
84888337324
-
Hot-electron nanoscopy using adiabatic compression of surface plasmons
-
COI: 1:CAS:528:DC%2BC3sXhs1CiurzP
-
Giugni A, Torre B, Toma A, Francardi M, Malerba M, Alabastri A et al (2013) Hot-electron nanoscopy using adiabatic compression of surface plasmons. Nat Nanotechnol 8(11):845–852
-
(2013)
Nat Nanotechnol
, vol.8
, Issue.11
, pp. 845-852
-
-
Giugni, A.1
Torre, B.2
Toma, A.3
Francardi, M.4
Malerba, M.5
Alabastri, A.6
-
25
-
-
84902255007
-
Metamaterial perfect absorber based hot electron photodetection
-
COI: 1:CAS:528:DC%2BC2cXotFCks7k%3D
-
Li W, Valentine J (2014) Metamaterial perfect absorber based hot electron photodetection. Nano Lett 14(6):3510–3514
-
(2014)
Nano Lett
, vol.14
, Issue.6
, pp. 3510-3514
-
-
Li, W.1
Valentine, J.2
-
26
-
-
84866420080
-
A novel application of plasmonics: plasmon-driven surface-catalyzed reactions
-
COI: 1:CAS:528:DC%2BC38Xps1yjtL4%3D
-
Sun M, Xu H (2012) A novel application of plasmonics: plasmon-driven surface-catalyzed reactions. Small 8(18):2777–2786
-
(2012)
Small
, vol.8
, Issue.18
, pp. 2777-2786
-
-
Sun, M.1
Xu, H.2
-
27
-
-
84923303601
-
Plasmon-driven surface catalysis in hybridized plasmonic gap modes
-
COI: 1:CAS:528:DC%2BC2MXksVylurw%3D
-
Wang H, Liu T, Huang Y, Fang Y, Liu R, Wang S et al (2014) Plasmon-driven surface catalysis in hybridized plasmonic gap modes. Sci Rep 4:7087
-
(2014)
Sci Rep
, vol.4
, pp. 7087
-
-
Wang, H.1
Liu, T.2
Huang, Y.3
Fang, Y.4
Liu, R.5
Wang, S.6
-
28
-
-
84876374589
-
An autonomous photosynthetic device in which all charge carriers derive from surface plasmons
-
COI: 1:CAS:528:DC%2BC3sXivFygtb0%3D
-
Mubeen S, Lee J, Singh N, Kramer S, Stucky GD, Moskovits M (2013) An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat Nanotechnol 8(4):247–251
-
(2013)
Nat Nanotechnol
, vol.8
, Issue.4
, pp. 247-251
-
-
Mubeen, S.1
Lee, J.2
Singh, N.3
Kramer, S.4
Stucky, G.D.5
Moskovits, M.6
-
29
-
-
84866307907
-
Plasmonic photoanodes for solar water splitting with visible light
-
COI: 1:CAS:528:DC%2BC38Xht1Gnu73O
-
Lee J, Mubeen S, Ji X, Stucky GD, Moskovits M (2012) Plasmonic photoanodes for solar water splitting with visible light. Nano Lett 12(9):5014–5019
-
(2012)
Nano Lett
, vol.12
, Issue.9
, pp. 5014-5019
-
-
Lee, J.1
Mubeen, S.2
Ji, X.3
Stucky, G.D.4
Moskovits, M.5
-
30
-
-
79958809129
-
Plasmons in strongly coupled metallic nanostructures
-
COI: 1:CAS:528:DC%2BC3MXls1eks78%3D
-
Halas NJ, Lal S, Chang WS, Link S, Nordlander P (2011) Plasmons in strongly coupled metallic nanostructures. Chem Rev 111(6):3913–3961
-
(2011)
Chem Rev
, vol.111
, Issue.6
, pp. 3913-3961
-
-
Halas, N.J.1
Lal, S.2
Chang, W.S.3
Link, S.4
Nordlander, P.5
-
31
-
-
84896325179
-
Hot-electron photodetection with a plasmonic nanostripe antenna
-
COI: 1:CAS:528:DC%2BC2cXitVyiuro%3D
-
Chalabi H, Schoen D, Brongersma ML (2014) Hot-electron photodetection with a plasmonic nanostripe antenna. Nano Lett 14(3):1374–1380
-
(2014)
Nano Lett
, vol.14
, Issue.3
, pp. 1374-1380
-
-
Chalabi, H.1
Schoen, D.2
Brongersma, M.L.3
-
32
-
-
84876548216
-
Photoelectric energy conversion of plasmon-generated hot carriers in metal-insulator-semiconductor structures
-
Arquer FPGD, Mihi A, Kufer D, Konstantatos G (2013) Photoelectric energy conversion of plasmon-generated hot carriers in metal-insulator-semiconductor structures. ACS Nano 7:3581–3588
-
(2013)
ACS Nano
, vol.7
, pp. 3581-3588
-
-
Arquer, F.P.G.D.1
Mihi, A.2
Kufer, D.3
Konstantatos, G.4
-
33
-
-
84893492271
-
Probing the location of hot spots by surface-enhanced Raman spectroscopy: toward uniform substrates
-
Xiang W, Li M, Meng L, Lin K, Feng J, Huang T et al (2014) Probing the location of hot spots by surface-enhanced Raman spectroscopy: toward uniform substrates. ACS Nano 8:528–536
-
(2014)
ACS Nano
, vol.8
, pp. 528-536
-
-
Xiang, W.1
Li, M.2
Meng, L.3
Lin, K.4
Feng, J.5
Huang, T.6
-
34
-
-
84894169943
-
Tuning of spectral and angular distribution of scattering from single gold nanoparticles by subwavelength interference layers
-
COI: 1:CAS:528:DC%2BC2cXjtVeiug%3D%3D
-
Wirth J, Garwe F, Bergmann J, Paa W, Csaki A, Stranik O et al (2014) Tuning of spectral and angular distribution of scattering from single gold nanoparticles by subwavelength interference layers. Nano Lett 14(2):570–577
-
(2014)
Nano Lett
, vol.14
, Issue.2
, pp. 570-577
-
-
Wirth, J.1
Garwe, F.2
Bergmann, J.3
Paa, W.4
Csaki, A.5
Stranik, O.6
-
35
-
-
52649101587
-
Individual nanometer hole-particle pairs for surface-enhanced Raman scattering
-
COI: 1:CAS:528:DC%2BD1cXhtF2gsLnJ
-
Wei H, Hakanson U, Yang Z, Hook F, Xu H (2008) Individual nanometer hole-particle pairs for surface-enhanced Raman scattering. Small 4(9):1296–1300
-
(2008)
Small
, vol.4
, Issue.9
, pp. 1296-1300
-
-
Wei, H.1
Hakanson, U.2
Yang, Z.3
Hook, F.4
Xu, H.5
-
36
-
-
84877137900
-
Electromagnetic field redistribution in hybridized plasmonic particle-film system
-
Fang Y, Huang Y (2013) Electromagnetic field redistribution in hybridized plasmonic particle-film system. Appl Phys Lett 102(15):153108
-
(2013)
Appl Phys Lett
, vol.102
, Issue.15
, pp. 153108
-
-
Fang, Y.1
Huang, Y.2
-
37
-
-
77958608853
-
Can p,p′-dimercaptoazobisbenzene be produced from p-aminothiophenol by surface photochemistry reaction in the junctions of a Ag nanoparticle-molecule-Ag (or Au) film?
-
COI: 1:CAS:528:DC%2BC3cXht1aqsbjN
-
Huang Y, Fang Y, Yang Z, Sun M (2010) Can p,p′-dimercaptoazobisbenzene be produced from p-aminothiophenol by surface photochemistry reaction in the junctions of a Ag nanoparticle-molecule-Ag (or Au) film? J Phys Chem C 114:18263–18269
-
(2010)
J Phys Chem C
, vol.114
, pp. 18263-18269
-
-
Huang, Y.1
Fang, Y.2
Yang, Z.3
Sun, M.4
-
38
-
-
77955823087
-
When the signal is not from the original molecule to be detected: chemical transformation of para-aminothiophenol on Ag during the SERS measurement
-
COI: 1:CAS:528:DC%2BC3cXntFylurk%3D
-
Huang Y, Zhu H, Liu G, Wu D, Ren B, Tian Z (2010) When the signal is not from the original molecule to be detected: chemical transformation of para-aminothiophenol on Ag during the SERS measurement. J Am Chem Soc 132:9244–9246
-
(2010)
J Am Chem Soc
, vol.132
, pp. 9244-9246
-
-
Huang, Y.1
Zhu, H.2
Liu, G.3
Wu, D.4
Ren, B.5
Tian, Z.6
-
39
-
-
84867020568
-
In-situ plasmon-driven chemical reactions revealed by high vacuum tip-enhanced Raman spectroscopy
-
Sun M, Zhang Z, Zheng H, Xu H (2012) In-situ plasmon-driven chemical reactions revealed by high vacuum tip-enhanced Raman spectroscopy. Sci Rep 2:647
-
(2012)
Sci Rep
, vol.2
, pp. 647
-
-
Sun, M.1
Zhang, Z.2
Zheng, H.3
Xu, H.4
-
40
-
-
84878052027
-
Amino acid-assisted synthesis of hierarchical silver microspheres for single particle surface-enhanced Raman spectroscopy
-
COI: 1:CAS:528:DC%2BC3sXmtleltLg%3D
-
Kang L, Xu P, Chen D, Zhang B, Du Y, Han X et al (2013) Amino acid-assisted synthesis of hierarchical silver microspheres for single particle surface-enhanced Raman spectroscopy. J Phys Chem C 117(19):10007–10012
-
(2013)
J Phys Chem C
, vol.117
, Issue.19
, pp. 10007-10012
-
-
Kang, L.1
Xu, P.2
Chen, D.3
Zhang, B.4
Du, Y.5
Han, X.6
-
41
-
-
84903433764
-
Plasmon-driven selective reductions revealed by tip-enhanced Raman spectroscopy
-
Sun M, Zhang Z, Chen L, Li Q, Sheng S, Xu H et al (2014) Plasmon-driven selective reductions revealed by tip-enhanced Raman spectroscopy. Adv Mater Interfaces 1(5):1300125
-
(2014)
Adv Mater Interfaces
, vol.1
, Issue.5
, pp. 1300125
-
-
Sun, M.1
Zhang, Z.2
Chen, L.3
Li, Q.4
Sheng, S.5
Xu, H.6
-
42
-
-
33845279206
-
Surface-enhanced Raman spectroscopy as a probe of eiectroorganic reaction pathways. 1. Processes involving adsorbed nitrobenzene, azobenzene, and related species
-
COI: 1:CAS:528:DyaL1cXmtl2is7c%3D
-
Gao P, Gosztola D, Weaver MJ (1988) Surface-enhanced Raman spectroscopy as a probe of eiectroorganic reaction pathways. 1. Processes involving adsorbed nitrobenzene, azobenzene, and related species. J Phys Chem 92:7122–7130
-
(1988)
J Phys Chem
, vol.92
, pp. 7122-7130
-
-
Gao, P.1
Gosztola, D.2
Weaver, M.J.3
|