메뉴 건너뛰기




Volumn 44, Issue 4, 2015, Pages 467-508

Dealing with the evaluation of supervised classification algorithms

Author keywords

Classification algorithms comparison; Classifier evaluation; Estimation methods; Quality measures; Supervised classification

Indexed keywords

ALGORITHMS; QUALITY CONTROL;

EID: 84945479662     PISSN: 02692821     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10462-015-9433-y     Document Type: Article
Times cited : (96)

References (132)
  • 1
    • 24044435942 scopus 로고    scopus 로고
    • Reducing multiclass to binary: A unifying approach for margin classifiers
    • Allwein EL, Schapire RE, Singer Y (2001) Reducing multiclass to binary: A unifying approach for margin classifiers. J Mach Learn Res 1(2):113–141
    • (2001) J Mach Learn Res , vol.1 , Issue.2 , pp. 113-141
    • Allwein, E.L.1    Schapire, R.E.2    Singer, Y.3
  • 2
    • 84945478546 scopus 로고    scopus 로고
    • Anagnostopoulos C, Hand DJ (2012) hmeasure: the H-measure and other scalar classification performance metrics. , R package version 1.0
    • Anagnostopoulos C, Hand DJ (2012) hmeasure: the H-measure and other scalar classification performance metrics. http://CRAN.R-project.org/package=hmeasure, R package version 1.0
  • 3
    • 0033220735 scopus 로고    scopus 로고
    • Measure-based classifier performance evaluation
    • Andersson A, Davidsson P, Linén J (1999) Measure-based classifier performance evaluation. Pattern Recognit Lett 11–13(20):1165–1173
    • (1999) Pattern Recognit Lett , vol.11-13 , Issue.20 , pp. 1165-1173
    • Andersson, A.1    Davidsson, P.2    Linén, J.3
  • 4
    • 77950806386 scopus 로고    scopus 로고
    • A new performance measure for class imbalance learning. Application to bioinformatics problems. In: Proceedings of the 26th international conference on machine learning and applications
    • Batuwita R, Palade V (2009) A new performance measure for class imbalance learning. Application to bioinformatics problems. In: Proceedings of the 26th international conference on machine learning and applications, pp 545–550
    • (2009) pp 545–550
    • Batuwita, R.1    Palade, V.2
  • 5
    • 84925604888 scopus 로고    scopus 로고
    • No unbiased estimator of the variance of k-fold cross-validation
    • Bengio Y, Grandvalet Y (2004) No unbiased estimator of the variance of k-fold cross-validation. J Mach Learn Res 5:1089–1105
    • (2004) J Mach Learn Res , vol.5 , pp. 1089-1105
    • Bengio, Y.1    Grandvalet, Y.2
  • 7
    • 84877652134 scopus 로고    scopus 로고
    • Significance tests or confidence intervals: which are preferable for the comparison of classifiers?
    • Berrar D, Lozano JA (2013) Significance tests or confidence intervals: which are preferable for the comparison of classifiers? J Exp Theor Artif Intell 25(2):189–206
    • (2013) J Exp Theor Artif Intell , vol.25 , Issue.2 , pp. 189-206
    • Berrar, D.1    Lozano, J.A.2
  • 8
    • 14544275490 scopus 로고    scopus 로고
    • Estimationg replicability of classifier learning experiments. In: Brodley CE (ed) Proceedings of the 21st international conference on machine learning
    • Bouckaert RR (2004) Estimationg replicability of classifier learning experiments. In: Brodley CE (ed) Proceedings of the 21st international conference on machine learning. ACM
    • (2004) ACM
    • Bouckaert, R.R.1
  • 9
    • 7444237797 scopus 로고    scopus 로고
    • Evaluating the replicability of significance tests fo comparing learning algorihtms. In: Proceedings of the 8th Pacifica-Asian conference on knowledge discovery and data mining
    • Bouckaert RR, Frank E (2004) Evaluating the replicability of significance tests fo comparing learning algorihtms. In: Proceedings of the 8th Pacifica-Asian conference on knowledge discovery and data mining, pp 3–12
    • (2004) pp 3–12
    • Bouckaert, R.R.1    Frank, E.2
  • 11
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • Bradley A (1997) The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit 30(7):1145–1159
    • (1997) Pattern Recognit , vol.30 , Issue.7 , pp. 1145-1159
    • Bradley, A.1
  • 12
    • 2142758118 scopus 로고    scopus 로고
    • Bolstered error estimation
    • Braga-Neto U, Dougherty E (2004) Bolstered error estimation. Pattern Recognit 37(6):1267–1281
    • (2004) Pattern Recognit , vol.37 , Issue.6 , pp. 1267-1281
    • Braga-Neto, U.1    Dougherty, E.2
  • 13
    • 84945437550 scopus 로고    scopus 로고
    • On the effect of data set size on bias and variance in classification learning. In: Proceedings of the 4th Australian knowledge acquisition workshop
    • Brain D, Webb GI (1999) On the effect of data set size on bias and variance in classification learning. In: Proceedings of the 4th Australian knowledge acquisition workshop, pp 117–128
    • (1999) pp 117–128
    • Brain, D.1    Webb, G.I.2
  • 14
    • 84864854508 scopus 로고    scopus 로고
    • The need for low bias algorithms in classification learning from large data sets. In: Proceedings of the 16th European conference principles of data mining and knowledge discovery
    • Brain D, Webb GI (2002) The need for low bias algorithms in classification learning from large data sets. In: Proceedings of the 16th European conference principles of data mining and knowledge discovery, pp 62–73
    • (2002) pp 62–73
    • Brain, D.1    Webb, G.I.2
  • 15
    • 0003010182 scopus 로고
    • Verification of forecasts expressed in terms of probability
    • Brier GW (1950) Verification of forecasts expressed in terms of probability. Monthly Weather Rev 78:1–3
    • (1950) Monthly Weather Rev , vol.78 , pp. 1-3
    • Brier, G.W.1
  • 16
    • 84884946129 scopus 로고    scopus 로고
    • Density-preserving sampling: robust and efficient alternative to cross-validation for error estimation
    • Budka M (2013) Density-preserving sampling: robust and efficient alternative to cross-validation for error estimation. IEEE Trans Neural Netw Learn Syst 24(1):22–34
    • (2013) IEEE Trans Neural Netw Learn Syst , vol.24 , Issue.1 , pp. 22-34
    • Budka, M.1
  • 17
    • 0000354976 scopus 로고
    • A comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods
    • Burman P (1989) A comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods. Biometrika 76(3):503–514
    • (1989) Biometrika , vol.76 , Issue.3 , pp. 503-514
    • Burman, P.1
  • 19
    • 27144549260 scopus 로고    scopus 로고
    • Editorial: Special issue on learning from imbalanced data sets
    • Chawla NV, Japkowicz N (2004) Editorial: Special issue on learning from imbalanced data sets. ACM SIGKDD Explor Newslett 6(1):2000–2004
    • (2004) ACM SIGKDD Explor Newslett , vol.6 , Issue.1 , pp. 2000-2004
    • Chawla, N.V.1    Japkowicz, N.2
  • 20
    • 0039802908 scopus 로고
    • The earth is round ((Formula presented.))
    • Cohen J (1994) The earth is round ($$p <.05$$p<.05). Am Psychol 49:997–1003
    • (1994) Am Psychol , vol.49 , pp. 997-1003
    • Cohen, J.1
  • 21
    • 84897965802 scopus 로고    scopus 로고
    • Cortes C, Mohri M (2004) AUC optimization vs. error rate minimization. In: Proceedings of the 16th advances in neural information processing systems conference, p 313
    • Cortes C, Mohri M (2004) AUC optimization vs. error rate minimization. In: Proceedings of the 16th advances in neural information processing systems conference, p 313
  • 23
    • 33749249600 scopus 로고    scopus 로고
    • The relationship between precision-recall and ROC curves. In: Proceedings of the 23rd international conference on machine learning
    • Davis J, Goadrich M (2006) The relationship between precision-recall and ROC curves. In: Proceedings of the 23rd international conference on machine learning, pp 233–240
    • (2006) pp 233–240
    • Davis, J.1    Goadrich, M.2
  • 25
    • 0001740042 scopus 로고
    • Calibration-based empirical probability
    • Dawid A (1985) Calibration-based empirical probability. Ann Stat 13(4):1251–1274
    • (1985) Ann Stat , vol.13 , Issue.4 , pp. 1251-1274
    • Dawid, A.1
  • 26
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demsar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30
    • (2006) J Mach Learn Res , vol.7 , pp. 1-30
    • Demsar, J.1
  • 28
    • 3042555481 scopus 로고    scopus 로고
    • An alternative to null-hypothesis significance tests
    • Denis DJ (2003) An alternative to null-hypothesis significance tests. Theory Sci 4(1)
    • (2003) Theory Sci , vol.4 , Issue.1
    • Denis, D.J.1
  • 29
    • 79551493545 scopus 로고    scopus 로고
    • Maximum likelihood in cost-sensitive learning: model specification, approximations, and upper bounds
    • Dmochowski JP, Sajda P, Parra LC (2010) Maximum likelihood in cost-sensitive learning: model specification, approximations, and upper bounds. J Mach Learn Res 11:3313–3332
    • (2010) J Mach Learn Res , vol.11 , pp. 3313-3332
    • Dmochowski, J.P.1    Sajda, P.2    Parra, L.C.3
  • 32
    • 33748991193 scopus 로고    scopus 로고
    • Cost curves: an improved methyod for visualizing classifier performance
    • Drummond C, Holte RC (2006) Cost curves: an improved methyod for visualizing classifier performance. Mach Learn 65(1):95–130
    • (2006) Mach Learn , vol.65 , Issue.1 , pp. 95-130
    • Drummond, C.1    Holte, R.C.2
  • 33
    • 77951200774 scopus 로고    scopus 로고
    • Warning: Statistical benchmarking is addictive. Kicking the habit in machine learning
    • Drummond C, Japkowicz N (2010) Warning: Statistical benchmarking is addictive. Kicking the habit in machine learning. J Exp Theor Artif Intell 22(1):67–80
    • (2010) J Exp Theor Artif Intell , vol.22 , Issue.1 , pp. 67-80
    • Drummond, C.1    Japkowicz, N.2
  • 34
    • 0002344794 scopus 로고
    • Bootstrap methods: another look at the jackknife
    • Efron B (1979) Bootstrap methods: another look at the jackknife. Ann Stat 7(1):1–26
    • (1979) Ann Stat , vol.7 , Issue.1 , pp. 1-26
    • Efron, B.1
  • 35
    • 0003242435 scopus 로고
    • The jackknife, the bootstrap and other resampling plans
    • Efron B (1982) The jackknife, the bootstrap and other resampling plans. Soc Ind Appl Math
    • (1982) Soc Ind Appl Math
    • Efron, B.1
  • 36
    • 84950461478 scopus 로고
    • Estimating the error rate of a prediction rule: improvement on cross-validation
    • Efron B (1983) Estimating the error rate of a prediction rule: improvement on cross-validation. J Am Stat Assoc 78(382):316–331
    • (1983) J Am Stat Assoc , vol.78 , Issue.382 , pp. 316-331
    • Efron, B.1
  • 37
    • 84964203940 scopus 로고
    • Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy
    • Efron B, Tibshirani R (1986) Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistics 1(1):54–77
    • (1986) Statistics , vol.1 , Issue.1 , pp. 54-77
    • Efron, B.1    Tibshirani, R.2
  • 39
    • 0031536511 scopus 로고    scopus 로고
    • Improvements on cross-validation: the 632+ bootstrap method
    • Efron B, Tibshirani R (1997) Improvements on cross-validation: the 632+ bootstrap method. J Am Stat Assoc 92(438):548–560
    • (1997) J Am Stat Assoc , vol.92 , Issue.438 , pp. 548-560
    • Efron, B.1    Tibshirani, R.2
  • 40
    • 0031239175 scopus 로고    scopus 로고
    • Robustness metrics for measuring the influence of additive noise on the performance of statistical classifiers
    • Egmont-Petersen M, Talmon JL, Hasman A (1997) Robustness metrics for measuring the influence of additive noise on the performance of statistical classifiers. Int J Med Inform 46:103–112
    • (1997) Int J Med Inform , vol.46 , pp. 103-112
    • Egmont-Petersen, M.1    Talmon, J.L.2    Hasman, A.3
  • 43
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27(8):861–874
    • (2006) Pattern Recognit Lett , vol.27 , Issue.8 , pp. 861-874
    • Fawcett, T.1
  • 44
    • 70349280929 scopus 로고    scopus 로고
    • An experimental comparison of performance measures for classification
    • Ferri C, Hernández-Orallo R, Modroiu R (2009) An experimental comparison of performance measures for classification. Pattern Recognit Lett 30:27–38
    • (2009) Pattern Recognit Lett , vol.30 , pp. 27-38
    • Ferri, C.1    Hernández-Orallo, R.2    Modroiu, R.3
  • 45
    • 21144459575 scopus 로고
    • On a monotonicity problem in step-down multiple test procedures
    • Finner H (1993) On a monotonicity problem in step-down multiple test procedures. J Am Stat Assoc 88:920–923
    • (1993) J Am Stat Assoc , vol.88 , pp. 920-923
    • Finner, H.1
  • 47
    • 21744462998 scopus 로고    scopus 로고
    • On bias, variance, 0/1 loss, and the curse-of-dimensionality
    • Friedman JH (1997) On bias, variance, 0/1 loss, and the curse-of-dimensionality. Data Min Knowl Discov 1:55–77
    • (1997) Data Min Knowl Discov , vol.1 , pp. 55-77
    • Friedman, J.H.1
  • 48
    • 0001837148 scopus 로고
    • A comparison of alternative tests of significance for the problem of m rankings
    • Friedman M (1940) A comparison of alternative tests of significance for the problem of m rankings. Ann Math Stat 11:86–92
    • (1940) Ann Math Stat , vol.11 , pp. 86-92
    • Friedman, M.1
  • 49
    • 79951551258 scopus 로고    scopus 로고
    • Estimation of prediction error by using k-fold cross-validation
    • Fushiki T (2011) Estimation of prediction error by using k-fold cross-validation. Stat Comput 21(2):137–146
    • (2011) Stat Comput , vol.21 , Issue.2 , pp. 137-146
    • Fushiki, T.1
  • 50
    • 79953051509 scopus 로고    scopus 로고
    • An overview of ensemble methods for binary classifiers in multi-class problems: experimental study on one-vs-one and one-vs-all schemes
    • Galar M, Fernández A, Barrenechea E, Bustince H, Herrera F (2011) An overview of ensemble methods for binary classifiers in multi-class problems: experimental study on one-vs-one and one-vs-all schemes. Pattern Recognit 44:1761–1776
    • (2011) Pattern Recognit , vol.44 , pp. 1761-1776
    • Galar, M.1    Fernández, A.2    Barrenechea, E.3    Bustince, H.4    Herrera, F.5
  • 52
    • 70350664414 scopus 로고    scopus 로고
    • Issues in evaluation of stream learning algorithms. In: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining
    • Gama J, Sebastiao R, Pereira Rodrigues P (2009) Issues in evaluation of stream learning algorithms. In: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, pp 329–338
    • (2009) pp 329–338
    • Gama, J.1    Sebastiao, R.2    Pereira Rodrigues, P.3
  • 53
    • 58149287952 scopus 로고    scopus 로고
    • An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons
    • Garcia S, Herrera F (2008) An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons. J Mach Learn Res 9:2677–2694
    • (2008) J Mach Learn Res , vol.9 , pp. 2677-2694
    • Garcia, S.1    Herrera, F.2
  • 54
    • 77549084648 scopus 로고    scopus 로고
    • Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power
    • Garcia S, Fernandez A, Luengo J, Herrera F (2010a) Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf Sci 180(10):2044–2064
    • (2010) Inf Sci , vol.180 , Issue.10 , pp. 2044-2064
    • Garcia, S.1    Fernandez, A.2    Luengo, J.3    Herrera, F.4
  • 55
    • 78149483936 scopus 로고    scopus 로고
    • Theoretical analysis of a performance measure for imbalanced data. In: Proceedings of the 18th IEEE international conference on pattern recognition
    • Garcia V, Mollineda RA, Sanchez JS (2010b) Theoretical analysis of a performance measure for imbalanced data. In: Proceedings of the 18th IEEE international conference on pattern recognition, pp 617–620
    • (2010) pp 617–620
    • Garcia, V.1    Mollineda, R.A.2    Sanchez, J.S.3
  • 56
    • 19644394949 scopus 로고    scopus 로고
    • Likelihood ratios: A simple and flexible statistic for empirical psychologists
    • Glover S, Dixon P (2004) Likelihood ratios: A simple and flexible statistic for empirical psychologists. Psychon Bull Rev 11(5):791–806
    • (2004) Psychon Bull Rev , vol.11 , Issue.5 , pp. 791-806
    • Glover, S.1    Dixon, P.2
  • 59
    • 34447464262 scopus 로고
    • Corroboration, explanation, evolving probability, simplicity, and a sharpened razor
    • Good IJ (1968) Corroboration, explanation, evolving probability, simplicity, and a sharpened razor. Br J Philos Sci 19:123–143
    • (1968) Br J Philos Sci , vol.19 , pp. 123-143
    • Good, I.J.1
  • 60
    • 0003504212 scopus 로고    scopus 로고
    • Permutation test: a practical guide to resampling methods for testing hypotheses
    • Good PI (2000) Permutation test: a practical guide to resampling methods for testing hypotheses. Springer
    • (2000) Springer
    • Good, P.I.1
  • 61
    • 45749100408 scopus 로고    scopus 로고
    • A dirty dozen: twelve p-value misconceptions
    • Goodman S (2008) A dirty dozen: twelve p-value misconceptions. Semin Hematol 45(3):135–140
    • (2008) Semin Hematol , vol.45 , Issue.3 , pp. 135-140
    • Goodman, S.1
  • 62
    • 77949462754 scopus 로고    scopus 로고
    • Hypothesis testing for cross-validation. Tech
    • Département d’informatique et recherche opérationnelle, Université de Montréal
    • Grandvalet Y, Bengio Y (2006) Hypothesis testing for cross-validation. Tech. rep., Département d’informatique et recherche opérationnelle, Université de Montréal
    • (2006) rep.
    • Grandvalet, Y.1    Bengio, Y.2
  • 64
    • 0038606580 scopus 로고    scopus 로고
    • Misinterpretations of significance: A problem students share with their teachers
    • Haller H, Krauss S (2002) Misinterpretations of significance: A problem students share with their teachers. Methods Psychol Res Online 7(1):1–20
    • (2002) Methods Psychol Res Online , vol.7 , Issue.1 , pp. 1-20
    • Haller, H.1    Krauss, S.2
  • 65
    • 0000493076 scopus 로고    scopus 로고
    • Reliability diagrams for multicategory probabilistic forecast
    • Hamill TM (1996) Reliability diagrams for multicategory probabilistic forecast. Weather Forecast 12(4):736–741
    • (1996) Weather Forecast , vol.12 , Issue.4 , pp. 736-741
    • Hamill, T.M.1
  • 66
    • 0001020401 scopus 로고
    • Recent advances in error rate estimation
    • Hand DJ (1986) Recent advances in error rate estimation. Pattern Recognit Lett 4(5):335–346
    • (1986) Pattern Recognit Lett , vol.4 , Issue.5 , pp. 335-346
    • Hand, D.J.1
  • 67
    • 21844516840 scopus 로고
    • Deconstructing statistical questions
    • Hand DJ (1994) Deconstructing statistical questions. J R Stat Soc Ser A 157(3):317–356
    • (1994) J R Stat Soc Ser A , vol.157 , Issue.3 , pp. 317-356
    • Hand, D.J.1
  • 68
    • 69549133517 scopus 로고    scopus 로고
    • Measuring classifier performance: a coherent alternative to the area under de ROC curve
    • Hand DJ (2009) Measuring classifier performance: a coherent alternative to the area under de ROC curve. Mach Learn 77:103–123
    • (2009) Mach Learn , vol.77 , pp. 103-123
    • Hand, D.J.1
  • 69
    • 77953705269 scopus 로고    scopus 로고
    • Evaluation diagnostic tests: the area under the ROC curve and the balance of errors
    • Hand DJ (2010) Evaluation diagnostic tests: the area under the ROC curve and the balance of errors. Stat Med 29:1502–1510
    • (2010) Stat Med , vol.29 , pp. 1502-1510
    • Hand, D.J.1
  • 70
    • 84873807222 scopus 로고    scopus 로고
    • When is the area under the receiver operating characteristic curve an appropriate measure of classifier performance?
    • Hand DJ, Anagnostopoulos C (2013) When is the area under the receiver operating characteristic curve an appropriate measure of classifier performance? Pattern Recognit Lett 34(5):492–495
    • (2013) Pattern Recognit Lett , vol.34 , Issue.5 , pp. 492-495
    • Hand, D.J.1    Anagnostopoulos, C.2
  • 71
    • 84892916856 scopus 로고    scopus 로고
    • A better Beta for the H measure of classification performance
    • Hand DJ, Anagnostopoulos C (2014) A better Beta for the H measure of classification performance. Pattern Recogn Lett 40:41–46
    • (2014) Pattern Recogn Lett , vol.40 , pp. 41-46
    • Hand, D.J.1    Anagnostopoulos, C.2
  • 72
    • 0003562954 scopus 로고    scopus 로고
    • A simple generalisation of the area under the ROC curve for multiple class classification problems
    • Hand DJ, Till RJ (2001) A simple generalisation of the area under the ROC curve for multiple class classification problems. Mach Learn 45:171–186
    • (2001) Mach Learn , vol.45 , pp. 171-186
    • Hand, D.J.1    Till, R.J.2
  • 74
    • 0022965475 scopus 로고
    • An improved sequentially rejective bonferroni test procedure
    • Holland BS, Copenhaver MD (1987) An improved sequentially rejective bonferroni test procedure. Biometrics 43:417–423
    • (1987) Biometrics , vol.43 , pp. 417-423
    • Holland, B.S.1    Copenhaver, M.D.2
  • 75
    • 0038047907 scopus 로고    scopus 로고
    • Relation between permutation-test p values and classifier error estimates
    • Hsing T, Attoor S, Dougherty E (2003) Relation between permutation-test p values and classifier error estimates. Mach Learn 52(1):11–30
    • (2003) Mach Learn , vol.52 , Issue.1 , pp. 11-30
    • Hsing, T.1    Attoor, S.2    Dougherty, E.3
  • 76
    • 0001750957 scopus 로고
    • Approximations of the critical region of the friedman statistic
    • Iman RL, Davenport JM (1980) Approximations of the critical region of the friedman statistic. Commun Stat 9:571–595
    • (1980) Commun Stat , vol.9 , pp. 571-595
    • Iman, R.L.1    Davenport, J.M.2
  • 77
    • 50349090268 scopus 로고    scopus 로고
    • Cross-validation and bootstrapping are unreliable in small sample classification
    • Isaksson A, Wallman M, Goransson H, Gustafsson M (2008) Cross-validation and bootstrapping are unreliable in small sample classification. Pattern Recognit Lett 29(14):1960–1965
    • (2008) Pattern Recognit Lett , vol.29 , Issue.14 , pp. 1960-1965
    • Isaksson, A.1    Wallman, M.2    Goransson, H.3    Gustafsson, M.4
  • 78
    • 49349117698 scopus 로고    scopus 로고
    • Mining supervised classification performance studies: a meta-analytic investigation
    • Jamain A, Hand DJ (2008) Mining supervised classification performance studies: a meta-analytic investigation. J Classif 25:87–112
    • (2008) J Classif , vol.25 , pp. 87-112
    • Jamain, A.1    Hand, D.J.2
  • 81
    • 84924514239 scopus 로고    scopus 로고
    • Cambridge University Press, Cambridge, A classification perspective
    • Japkowicz N, Shah M (2011) Evaluating learning algorithms. Cambridge University Press, Cambridge, A classification perspective
    • (2011) Evaluating learning algorithms
    • Japkowicz, N.1    Shah, M.2
  • 83
    • 0032808670 scopus 로고    scopus 로고
    • The insignificance of statistical significance testing
    • Johnson DH (1999) The insignificance of statistical significance testing. J Wildl Manag 63(3):763–772
    • (1999) J Wildl Manag , vol.63 , Issue.3 , pp. 763-772
    • Johnson, D.H.1
  • 85
    • 0038969996 scopus 로고    scopus 로고
    • Mining needle in a haystack: classifying rare classes via two-phase rule induction. In: Proceedings of the 27th ACM SIGMOD international conference on management of data
    • Joshi MV, Agarwal RC, Kumar V (2001) Mining needle in a haystack: classifying rare classes via two-phase rule induction. In: Proceedings of the 27th ACM SIGMOD international conference on management of data, pp 91–102
    • (2001) pp 91–102
    • Joshi, M.V.1    Agarwal, R.C.2    Kumar, V.3
  • 86
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th international joint conference on artificial intelligence
    • Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th international joint conference on artificial intelligence, pp 1137–1143
    • (1995) pp 1137–1143
    • Kohavi, R.1
  • 88
    • 84943709252 scopus 로고
    • Use of ranks in one-criterion variance analysis
    • Kruskal W, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47(260):583–621
    • (1952) J Am Stat Assoc , vol.47 , Issue.260 , pp. 583-621
    • Kruskal, W.1    Wallis, W.A.2
  • 89
    • 0031998121 scopus 로고    scopus 로고
    • Machine learning for the detection of oil spills in satellite radar images
    • Kubat M, Holte RC, Matwin S (1998) Machine learning for the detection of oil spills in satellite radar images. Mach Learn 30(2):195–215
    • (1998) Mach Learn , vol.30 , Issue.2 , pp. 195-215
    • Kubat, M.1    Holte, R.C.2    Matwin, S.3
  • 90
    • 84945495763 scopus 로고    scopus 로고
    • Kuhn M (2015) Caret: classification and regression training. , R package version 6.0-41
    • Kuhn M (2015) Caret: classification and regression training. http://CRAN.R-project.org/package=caret, R package version 6.0-41
  • 91
    • 84919912244 scopus 로고    scopus 로고
    • Bayesian comparison of machine learning algorithms on single and multiple datasets. In: Proceedings of the 15th international conference on artificial intellegence and statistics
    • Lacoste A, Laviolette F, Marchand M (2012) Bayesian comparison of machine learning algorithms on single and multiple datasets. In: Proceedings of the 15th international conference on artificial intellegence and statistics, pp 665–675
    • (2012) pp 665–675
    • Lacoste, A.1    Laviolette, F.2    Marchand, M.3
  • 92
    • 0007318509 scopus 로고
    • The shrinkage of the coefficient of multiple correlation
    • Larson SC (1931) The shrinkage of the coefficient of multiple correlation. J Educ Psychol 22:45–55
    • (1931) J Educ Psychol , vol.22 , pp. 45-55
    • Larson, S.C.1
  • 94
    • 85161651554 scopus 로고    scopus 로고
    • Data mining for direct marketing: Problems and solutions. In: Proceedings of the 4th international conference on knowledge discovery and data minig
    • Ling CX, Li C (1998) Data mining for direct marketing: Problems and solutions. In: Proceedings of the 4th international conference on knowledge discovery and data minig, pp 73–79
    • (1998) pp 73–79
    • Ling, C.X.1    Li, C.2
  • 95
    • 80052841314 scopus 로고    scopus 로고
    • A tutorial on a practical bayesian alternative to null-hypothesis significance testing
    • Masson M (2011) A tutorial on a practical bayesian alternative to null-hypothesis significance testing. Behav Res Methods 43(3):679–90
    • (2011) Behav Res Methods , vol.43 , Issue.3 , pp. 679-690
    • Masson, M.1
  • 96
    • 0030765252 scopus 로고    scopus 로고
    • Confidence intervals for differences in correlated binary proportions
    • May WL, Johnson WD (1997) Confidence intervals for differences in correlated binary proportions. Stat Med 16(18):2127–2136
    • (1997) Stat Med , vol.16 , Issue.18 , pp. 2127-2136
    • May, W.L.1    Johnson, W.D.2
  • 99
    • 84876917722 scopus 로고    scopus 로고
    • Study on the impact of partition-induced dataset shift on k-fold cross-validation
    • Moreno-Torres JG, Sáez JA, Herrera F (2012b) Study on the impact of partition-induced dataset shift on k-fold cross-validation. IEEE Trans Neural Netw Learn Syst 23(8):1304–1312
    • (2012) IEEE Trans Neural Netw Learn Syst , vol.23 , Issue.8 , pp. 1304-1312
    • Moreno-Torres, J.G.1    Sáez, J.A.2    Herrera, F.3
  • 100
    • 0042847140 scopus 로고    scopus 로고
    • Inference for the generalization error
    • Nadeau C, Bengio Y (2003) Inference for the generalization error. Mach Learn 52(3):239–281
    • (2003) Mach Learn , vol.52 , Issue.3 , pp. 239-281
    • Nadeau, C.1    Bengio, Y.2
  • 102
    • 77954676863 scopus 로고    scopus 로고
    • Permutation tests for studying classifier performance
    • Ojala M, Garriga GC (2010) Permutation tests for studying classifier performance. J Mach Learn Res 11:1833–1863
    • (2010) J Mach Learn Res , vol.11 , pp. 1833-1863
    • Ojala, M.1    Garriga, G.C.2
  • 103
    • 84884973790 scopus 로고    scopus 로고
    • Bootstrap analysis of multiple repetitions of experiments using an interval-valued multiple comparison procedure
    • Otero J, Sánchez L, Couso I, Palacios A (2014) Bootstrap analysis of multiple repetitions of experiments using an interval-valued multiple comparison procedure. J Comput Syst Sci 80(1):88–100
    • (2014) J Comput Syst Sci , vol.80 , Issue.1 , pp. 88-100
    • Otero, J.1    Sánchez, L.2    Couso, I.3    Palacios, A.4
  • 104
    • 80053222008 scopus 로고    scopus 로고
    • A survey on graphical methods for classification predictive performance evaluation
    • Prati RC, Batista GEPA, Monard MC (2011) A survey on graphical methods for classification predictive performance evaluation. IEEE Trans Knowl Data Eng 23(11):1601–1618
    • (2011) IEEE Trans Knowl Data Eng , vol.23 , Issue.11 , pp. 1601-1618
    • Prati, R.C.1    Batista, G.E.P.A.2    Monard, M.C.3
  • 105
    • 0002900357 scopus 로고    scopus 로고
    • The case against accuracy estimation for comparing induction algorithms. In: Proceeding of the 15th international conference on machine learning
    • Provost F, Fawcett T, Kohavi R (1998) The case against accuracy estimation for comparing induction algorithms. In: Proceeding of the 15th international conference on machine learning, pp 445–453
    • (1998) pp 445–453
    • Provost, F.1    Fawcett, T.2    Kohavi, R.3
  • 106
    • 0024689801 scopus 로고
    • A critical investigation of recall and precision as measures of retrieval system performance
    • Raghavan V, Bollmann P, Jung GS (1989) A critical investigation of recall and precision as measures of retrieval system performance. ACM Trans Inf Syst 7(3):205–229
    • (1989) ACM Trans Inf Syst , vol.7 , Issue.3 , pp. 205-229
    • Raghavan, V.1    Bollmann, P.2    Jung, G.S.3
  • 107
    • 34547372256 scopus 로고    scopus 로고
    • Optimized precision–a new measure for classifier performance evaluation. In: Proceedings of the 23th IEEE international conference on evolutionary computation
    • Ranawana R, Palade V (2006) Optimized precision–a new measure for classifier performance evaluation. In: Proceedings of the 23th IEEE international conference on evolutionary computation, pp 2254–2261
    • (2006) pp 2254–2261
    • Ranawana, R.1    Palade, V.2
  • 108
    • 79951756007 scopus 로고    scopus 로고
    • Consequences of variability in classifier performance estimates. In: Proceedings of the 10th IEEE international conference on data mining
    • Reader T, Hoens TR, Chawla NV (2010) Consequences of variability in classifier performance estimates. In: Proceedings of the 10th IEEE international conference on data mining, pp 421–430
    • (2010) pp 421–430
    • Reader, T.1    Hoens, T.R.2    Chawla, N.V.3
  • 109
    • 56749117943 scopus 로고    scopus 로고
    • In defense of one-vs-all classification
    • Rifkin R, Klautau A (2004) In defense of one-vs-all classification. J Mach Learn Res 5:101–141
    • (2004) J Mach Learn Res , vol.5 , pp. 101-141
    • Rifkin, R.1    Klautau, A.2
  • 110
    • 85008025524 scopus 로고    scopus 로고
    • Sensitivity analysis of k-fold cross validation in prediction error estimation
    • Rodríguez JD, Pérez A, Lozano JA (2010) Sensitivity analysis of k-fold cross validation in prediction error estimation. IEEE Trans Pattern Anal Mach Intell 32(3):569–575
    • (2010) IEEE Trans Pattern Anal Mach Intell , vol.32 , Issue.3 , pp. 569-575
    • Rodríguez, J.D.1    Pérez, A.2    Lozano, J.A.3
  • 111
    • 84870248309 scopus 로고    scopus 로고
    • A general framework for the statistical analysis of the sources of variance for classification error estimators
    • Rodríguez JD, Pérez A, Lozano JA (2013) A general framework for the statistical analysis of the sources of variance for classification error estimators. Pattern Recognit 46(3):855–864
    • (2013) Pattern Recognit , vol.46 , Issue.3 , pp. 855-864
    • Rodríguez, J.D.1    Pérez, A.2    Lozano, J.A.3
  • 112
    • 0001618721 scopus 로고
    • A sequentially rejective test procedure based on a modified bonferroni inequality
    • Rom DM (1990) A sequentially rejective test procedure based on a modified bonferroni inequality. Biometrika 77:663–665
    • (1990) Biometrika , vol.77 , pp. 663-665
    • Rom, D.M.1
  • 113
    • 0000130677 scopus 로고
    • The fallacy of the null-hypothesis significance test
    • Rozeboom W (1960) The fallacy of the null-hypothesis significance test. Psychol Bull 57(5):416–428
    • (1960) Psychol Bull , vol.57 , Issue.5 , pp. 416-428
    • Rozeboom, W.1
  • 114
  • 115
    • 11944262819 scopus 로고
    • Multiple hypothesis testing
    • Shaffer JP (1995) Multiple hypothesis testing. Annu Rev Psychol 46:551–584
    • (1995) Annu Rev Psychol , vol.46 , pp. 551-584
    • Shaffer, J.P.1
  • 116
    • 78651375098 scopus 로고    scopus 로고
    • A survey of hierarchical classification across different application domains
    • Silla CN, Freitas AA (2011) A survey of hierarchical classification across different application domains. Data Min Knowl Discov 22(1–2):31–72
    • (2011) Data Min Knowl Discov , vol.22 , Issue.1-2 , pp. 31-72
    • Silla, C.N.1    Freitas, A.A.2
  • 117
    • 0001352933 scopus 로고
    • Some examples of discrimination
    • Smith C (1947) Some examples of discrimination. Ann Eugen 13:272–282
    • (1947) Ann Eugen , vol.13 , pp. 272-282
    • Smith, C.1
  • 118
    • 84945461319 scopus 로고    scopus 로고
    • Beyond accuracy, f-score and ROC: a family of discriminant measures for performance evaluation. In: Proceedings of the 19th Australian joint conference on artificial intelligence: advances in artificial intelligence
    • Sokolova M, Japkowicz N, Szpakowicz S (2006) Beyond accuracy, f-score and ROC: a family of discriminant measures for performance evaluation. In: Proceedings of the 19th Australian joint conference on artificial intelligence: advances in artificial intelligence, pp 1015–1021
    • (2006) pp 1015–1021
    • Sokolova, M.1    Japkowicz, N.2    Szpakowicz, S.3
  • 119
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions (with discussion)
    • Stone M (1974) Cross-validatory choice and assessment of statistical predictions (with discussion). J R Stat Soc Ser B 36:111–147
    • (1974) J R Stat Soc Ser B , vol.36 , pp. 111-147
    • Stone, M.1
  • 120
    • 0017336301 scopus 로고
    • Asymptotics for and against cross-validation
    • Stone M (1977) Asymptotics for and against cross-validation. Biometrika 64(1):29–35
    • (1977) Biometrika , vol.64 , Issue.1 , pp. 29-35
    • Stone, M.1
  • 123
    • 34748873053 scopus 로고    scopus 로고
    • Multi-label classification: an overview
    • Tsoumakas G, Katakis I (2007) Multi-label classification: an overview. Int J Data Wareh Min 3(3):1–13
    • (2007) Int J Data Wareh Min , vol.3 , Issue.3 , pp. 1-13
    • Tsoumakas, G.1    Katakis, I.2
  • 126
    • 0034247206 scopus 로고    scopus 로고
    • Multiboosting: a technique for combining boosting and wagging
    • Webb G (2000) Multiboosting: a technique for combining boosting and wagging. Mach Learn 40(2):159–196
    • (2000) Mach Learn , vol.40 , Issue.2 , pp. 159-196
    • Webb, G.1
  • 127
    • 84945466542 scopus 로고    scopus 로고
    • Estimating bias and variance from data, Tech. rep
    • Webb GI, Conilione P (2003) Estimating bias and variance from data. Tech. rep
    • (2003) Conilione P
    • Webb, G.I.1
  • 128
    • 20844458491 scopus 로고    scopus 로고
    • Mining with rarity: a unifying framework
    • Weiss GM (2004) Mining with rarity: a unifying framework. ACM SIGKDD Explor Newslett 6(1):7–19
    • (2004) ACM SIGKDD Explor Newslett , vol.6 , Issue.1 , pp. 7-19
    • Weiss, G.M.1
  • 129
    • 0001884644 scopus 로고
    • Individual comparison by ranking methods
    • Wilcoxon F (1945) Individual comparison by ranking methods. Biometrics 1(6):80–83
    • (1945) Biometrics , vol.1 , Issue.6 , pp. 80-83
    • Wilcoxon, F.1
  • 130
    • 0000459353 scopus 로고    scopus 로고
    • The lack of a priori distinctions between learning algorithms
    • Wolpert DH (1996) The lack of a priori distinctions between learning algorithms. Neural Comput 8(7):1341–1390
    • (1996) Neural Comput , vol.8 , Issue.7 , pp. 1341-1390
    • Wolpert, D.H.1
  • 131
    • 84857047820 scopus 로고    scopus 로고
    • Iterative bias correction of the cross validation criterion
    • Yanagihara H (2012) Iterative bias correction of the cross validation criterion. Scand J Stat 39(1):116–130
    • (2012) Scand J Stat , vol.39 , Issue.1 , pp. 116-130
    • Yanagihara, H.1
  • 132
    • 0004232308 scopus 로고    scopus 로고
    • Pearson Prentice Hall, Englewood Cliffs
    • Zar JH (2010) Biostatistical analysis, 5th edn. Pearson Prentice Hall, Englewood Cliffs
    • (2010) Biostatistical analysis
    • Zar, J.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.