메뉴 건너뛰기




Volumn 107, Issue 6, 2015, Pages 2312-2320

Canopeo: A powerful new tool for measuring fractional green canopy cover

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84945370501     PISSN: 00021962     EISSN: 14350645     Source Type: Journal    
DOI: 10.2134/agronj15.0150     Document Type: Article
Times cited : (368)

References (41)
  • 2
    • 0000862230 scopus 로고    scopus 로고
    • An image analysis system for measuring insect feeding effects caused by biopesticides
    • Alchanatis, V., A. Navon, I. Glazer, and S. Levski. 2000. An image analysis system for measuring insect feeding effects caused by biopesticides. J. Agric. Eng. Res. 77:289–296. doi:10.1006/jaer.2000.0610.
    • (2000) J. Agric. Eng. Res , vol.77 , pp. 289-296
    • Alchanatis, V.1    Navon, A.2    Glazer, I.3    Levski, S.4
  • 3
    • 84856035221 scopus 로고    scopus 로고
    • Grazing intensity and spatial heterogeneity in bare soil in a grazing-resistant grassland
    • Augustine, D.J., D.T. Booth, S.E. Cox, and J.D. Derner. 2012. Grazing intensity and spatial heterogeneity in bare soil in a grazing-resistant grassland. Rangeland Ecol. Manag. 65:39–46. doi:10.2111/REM-D-11-00005.1.
    • (2012) Rangeland Ecol. Manag , vol.65 , pp. 39-46
    • Augustine, D.J.1    Booth, D.T.2    Cox, S.E.3    Derner, J.D.4
  • 4
    • 33746237549 scopus 로고    scopus 로고
    • Using digital image analysis to describe canopies of winter oilseed rape (Brassica napus L.) during vegetative developmental stages
    • Behrens, T., and W. Diepenbrock. 2006. Using digital image analysis to describe canopies of winter oilseed rape (Brassica napus L.) during vegetative developmental stages. J. Agron. Crop Sci. 192:295–302. doi:10.1111/j.1439-037X.2006.00211.x
    • (2006) J. Agron. Crop Sci , vol.192 , pp. 295-302
    • Behrens, T.1    Diepenbrock, W.2
  • 5
    • 33749179929 scopus 로고    scopus 로고
    • Point sampling digital imagery with “SamplePoint’
    • Booth, D.T., S.E. Cox, and R.D. Berryman. 2006. Point sampling digital imagery with “SamplePoint’. Environ. Monit. Assess. 123:97–108. doi:10.1007/s10661-005-9164-7.
    • (2006) Environ. Monit. Assess , vol.123 , pp. 97-108
    • Booth, D.T.1    Cox, S.E.2    Berryman, R.D.3
  • 6
    • 0031463298 scopus 로고    scopus 로고
    • On the relation between NDVI, fractional vegetation cover, and leaf area index
    • Carlson, T.N., and D.A. Ripley. 1997. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ. 62:241–252. doi:10.1016/S0034-4257(97)00104-1.
    • (1997) Remote Sens. Environ , vol.62 , pp. 241-252
    • Carlson, T.N.1    Ripley, D.A.2
  • 7
    • 78149314271 scopus 로고    scopus 로고
    • Weed identification method based on probabilistic neural network in the corn seedling field
    • Qingdao, China. 11–14. July 2010. IEEE, New York
    • Chen, L., J. Zhang, H. Su, and W. Guo. 2010. Weed identification method based on probabilistic neural network in the corn seedling field. Proceedings of the Ninth International Conference on Machine Learning and Cybernetics, Qingdao, China. 11–14. July 2010. IEEE, New York. doi: 10.1109/ICMLC.2010.5580822.
    • (2010) Proceedings of the Ninth International Conference on Machine Learning and Cybernetics
    • Chen, L.1    Zhang, J.2    Su, H.3    Guo, W.4
  • 9
  • 10
    • 43249117345 scopus 로고    scopus 로고
    • Monitoring plant phenology using digital repeat photography
    • Crimmins, M.A., and T.M. Crimmins. 2008. Monitoring plant phenology using digital repeat photography. Environ. Manage. 41:949–958. doi:10.1007/s00267-008-9086-6.
    • (2008) Environ. Manage , vol.41 , pp. 949-958
    • Crimmins, M.A.1    Crimmins, T.M.2
  • 11
    • 0032954905 scopus 로고    scopus 로고
    • Quantitative color image analysis of agronomic images
    • Ewing, R.P., and R. Horton. 1999. Quantitative color image analysis of agronomic images. Agron. J. 91:148–153. doi:10.2134/agronj1999.00021962009100010023x
    • (1999) Agron. J , vol.91 , pp. 148-153
    • Ewing, R.P.1    Horton, R.2
  • 12
    • 84908058355 scopus 로고    scopus 로고
    • Automated estimation of leaf area index from grapevine canopies using cover photography, video and computational analysis methods
    • Fuentes, S., C. Poblete-Echeverria, S. Ortega-Farias, S. Tyerman, and R. De Bei. 2014. Automated estimation of leaf area index from grapevine canopies using cover photography, video and computational analysis methods. Aust. J. Grape Wine Res. 20:465–473. doi:10.1111/ajgw.12098.
    • (2014) Aust. J. Grape Wine Res , vol.20 , pp. 465-473
    • Fuentes, S.1    Poblete-Echeverria, C.2    Ortega-Farias, S.3    Tyerman, S.4    De Bei, R.5
  • 13
    • 84903186940 scopus 로고    scopus 로고
    • Groundbased digital imaging as a tool to assess soybean growth and yield
    • Hoyos-Villegas, V., J.H. Houx, S.K. Singh, and F.B. Fritschi. 2014. Groundbased digital imaging as a tool to assess soybean growth and yield. Crop Sci. 54:1756–1768. doi:10.2135/cropsci2013.08.0540.
    • (2014) Crop Sci , vol.54 , pp. 1756-1768
    • Hoyos-Villegas, V.1    Houx, J.H.2    Singh, S.K.3    Fritschi, F.B.4
  • 14
    • 67249138627 scopus 로고    scopus 로고
    • AquaCrop-The FAO crop model to simulate yield response to water: III. Parameterization and testing for maize
    • Hsiao, T.C., L. Heng, P. Steduto, B. Rojas-Lara, D. Raes, and E. Fereres. 2009. AquaCrop-The FAO crop model to simulate yield response to water: III. Parameterization and testing for maize. Agron. J. 101:448–459. doi:10.2134/agronj2008.0218s
    • (2009) Agron. J. , vol.101 , pp. 448-459
    • Hsiao, T.C.1    Heng, L.2    Steduto, P.3    Rojas-Lara, B.4    Raes, D.5    Fereres, E.6
  • 15
    • 0038709730 scopus 로고    scopus 로고
    • Quantifying turfgrass color using digital image analysis
    • Karcher, D.E., and M.D. Richardson. 2003. Quantifying turfgrass color using digital image analysis. Crop Sci. 43:943–951. doi:10.2135/cropsci2003.9430.
    • (2003) Crop Sci , vol.43 , pp. 943-951
    • Karcher, D.E.1    Richardson, M.D.2
  • 16
    • 22844447427 scopus 로고    scopus 로고
    • Batch analysis of digital images to evaluate turfgrass characteristics
    • Karcher, D.E., and M.D. Richardson. 2005. Batch analysis of digital images to evaluate turfgrass characteristics. Crop Sci. 45:1536–1539. doi:10.2135/cropsci2004.0562.
    • (2005) Crop Sci , vol.45 , pp. 1536-1539
    • Karcher, D.E.1    Richardson, M.D.2
  • 17
    • 33845874102 scopus 로고    scopus 로고
    • Estimation of forest canopy cover: A comparison of field measurement techniques
    • Korhonen, L., K.T. Korhonen, M. Rautiainen, and P. Stenberg. 2006. Estimation of forest canopy cover: A comparison of field measurement techniques. Silva Fenn. 40:577–588. doi:10.14214/sf.315.
    • (2006) Silva Fenn , vol.40 , pp. 577-588
    • Korhonen, L.1    Korhonen, K.T.2    Rautiainen, M.3    Stenberg, P.4
  • 18
    • 84863826271 scopus 로고    scopus 로고
    • Rye–corn silage double-cropping reduces corn yield but improves environmental impacts
    • Krueger, E.S., T.E. Ochsner, J.M. Baker, P.M. Porter, and D.C. Reicosky. 2012. Rye–corn silage double-cropping reduces corn yield but improves environmental impacts. Agron. J. 104:888–896. doi:10.2134/agronj2011.0341.
    • (2012) Agron. J , vol.104 , pp. 888-896
    • Krueger, E.S.1    Ochsner, T.E.2    Baker, J.M.3    Porter, P.M.4    Reicosky, D.C.5
  • 19
    • 79954518305 scopus 로고    scopus 로고
    • Robust methods for measurement of leaf-cover area and biomass from image data
    • Lati, R.N., S. Filin, and H. Eizenberg. 2011. Robust methods for measurement of leaf-cover area and biomass from image data. Weed Sci. 59:276–284. doi:10.1614/WS-D-10-00054.1.
    • (2011) Weed Sci , vol.59 , pp. 276-284
    • Lati, R.N.1    Filin, S.2    Eizenberg, H.3
  • 20
    • 84857039604 scopus 로고    scopus 로고
    • Photographic assessment of temperate forest understory phenology in relation to springtime meteorological drivers
    • Liang, L., M.D. Schwartz, and S. Fei. 2012. Photographic assessment of temperate forest understory phenology in relation to springtime meteorological drivers. Int. J. Biometeorol. 56:343–355. doi:10.1007/s00484-011-0438-1.
    • (2012) Int. J. Biometeorol , vol.56 , pp. 343-355
    • Liang, L.1    Schwartz, M.D.2    Fei, S.3
  • 21
    • 0001740305 scopus 로고
    • Quantification of foliar plant-disease symptoms by microcomputer-digitized video image-analysis
    • Lindow, S.E., and R.R. Webb. 1983. Quantification of foliar plant-disease symptoms by microcomputer-digitized video image-analysis. Phytopathology 73:520–524. doi:10.1094/Phyto-73-520.
    • (1983) Phytopathology , vol.73 , pp. 520-524
    • Lindow, S.E.1    Webb, R.R.2
  • 22
    • 0032939320 scopus 로고    scopus 로고
    • Estimating vegetation coverage in wheat using digital images
    • Lukina, E.V., M.L. Stone, and W.R. Rann. 1999. Estimating vegetation coverage in wheat using digital images. J. Plant Nutr. 22:341–350. doi:10.1080/01904169909365631.
    • (1999) J. Plant Nutr , vol.22 , pp. 341-350
    • Lukina, E.V.1    Stone, M.L.2    Rann, W.R.3
  • 23
    • 47049087271 scopus 로고    scopus 로고
    • Verification of color vegetation indices for automated crop imaging applications
    • Meyer, G.E., and J.C. Neto. 2008. Verification of color vegetation indices for automated crop imaging applications. Comput. Electron. Agric. 63:282–293. doi:10.1016/j.compag.2008.03.009.
    • (2008) Comput. Electron. Agric , vol.63 , pp. 282-293
    • Meyer, G.E.1    Neto, J.C.2
  • 24
    • 84869070054 scopus 로고    scopus 로고
    • Canopy cover and leaf area index relationships for wheat, triticale, and corn
    • Nielsen, D.C., J.J. Miceli-Garcia, and D.J. Lyon. 2012. Canopy cover and leaf area index relationships for wheat, triticale, and corn. Agron. J. 104:1569–1573. doi:10.2134/agronj2012.0107n
    • (2012) Agron. J , vol.104 , pp. 1569-1573
    • Nielsen, D.C.1    Miceli-Garcia, J.J.2    Lyon, D.J.3
  • 25
    • 0034059647 scopus 로고    scopus 로고
    • Technical note: Estimating aboveground plant biomass using a photo-graphic technique
    • Paruelo, J.M., W.K. Lauenroth, and P.A. Roset. 2000. Technical note: Estimating aboveground plant biomass using a photo-graphic technique. J. Range Manage. 53:190–193. doi:10.2307/4003281.
    • (2000) J. Range Manage , vol.53 , pp. 190-193
    • Paruelo, J.M.1    Lauenroth, W.K.2    Roset, P.A.3
  • 26
    • 0034086795 scopus 로고    scopus 로고
    • Soybean canopy coverage and light interception measurements using digital imagery
    • Purcell, L.C. 2000. Soybean canopy coverage and light interception measurements using digital imagery. Crop Sci. 40:834–837. doi:10.2135/cropsci2000.403834x
    • (2000) Crop Sci , vol.40 , pp. 834-837
    • Purcell, L.C.1
  • 27
    • 65849118417 scopus 로고    scopus 로고
    • AquaCrop-The FAO crop model to simulate yield response to water: II. Main algorithms and software description
    • Raes, D., P. Steduto, T.C. Hsiao, and E. Fereres. 2009. AquaCrop-The FAO crop model to simulate yield response to water: II. Main algorithms and software description. Agron. J. 101:438–447. doi:10.2134/agronj2008.0140s
    • (2009) Agron. J. , vol.101 , pp. 438-447
    • Raes, D.1    Steduto, P.2    Hsiao, T.C.3    Fereres, E.4
  • 28
    • 77956293934 scopus 로고    scopus 로고
    • Timing of post-emergence weed harrowing
    • Rasmussen, J., H. Mathiasen, and B.M. Bibby. 2010. Timing of post-emergence weed harrowing. Weed Res. 50:436–446. doi:10.1111/j.1365-3180.2010.00799.x
    • (2010) Weed Res , vol.50 , pp. 436-446
    • Rasmussen, J.1    Mathiasen, H.2    Bibby, B.M.3
  • 29
    • 34447305727 scopus 로고    scopus 로고
    • Assessment of leaf cover and crop soil cover in weed harrowing research using digital images
    • Rasmussen, J., M. Norremark, and B.M. Bibby. 2007. Assessment of leaf cover and crop soil cover in weed harrowing research using digital images. Weed Res. 47:299–310. doi:10.1111/j.1365-3180.2007.00565.x
    • (2007) Weed Res , vol.47 , pp. 299-310
    • Rasmussen, J.1    Norremark, M.2    Bibby, B.M.3
  • 30
    • 79959836283 scopus 로고    scopus 로고
    • An image segmentation based on a genetic algorithm for determining soil coverage by crop residues
    • Ribeiro, A., J. Ranz, X.P. Burgos-Artizzu, G. Pajares, M.J.S. del Arco, and L. Navarrete. 2011. An image segmentation based on a genetic algorithm for determining soil coverage by crop residues. Sensors (Basel) 11:6480–6492. doi:10.3390/s110606480.
    • (2011) Sensors (Basel) , vol.11 , pp. 6480-6492
    • Ribeiro, A.1    Ranz, J.2    Burgos-Artizzu, X.P.3    Pajares, G.4    Del Arco, M.J.S.5    Navarrete, L.6
  • 31
    • 34248221556 scopus 로고    scopus 로고
    • Use of digital webcam images to track spring green-up in a deciduous broadleaf forest
    • Richardson, A.D., J.P. Jenkins, B.H. Braswell, D.Y. Hollinger, S.V. Ollinger, and M.L. Smith. 2007. Use of digital webcam images to track spring green-up in a deciduous broadleaf forest. Oecologia 152:323–334. doi: 10.1007/s00442-006-0657-z.
    • (2007) Oecologia , vol.152 , pp. 323-334
    • Richardson, A.D.1    Jenkins, J.P.2    Braswell, B.H.3    Hollinger, D.Y.4    Ollinger, S.V.5    Smith, M.L.6
  • 32
    • 0035651644 scopus 로고    scopus 로고
    • Quantifying turfgrass cover using digital image analysis
    • Richardson, M.D., D.E. Karcher, and L.C. Purcell. 2001. Quantifying turfgrass cover using digital image analysis. Crop Sci. 41:1884–1888. doi:10.2135/cropsci2001.1884.
    • (2001) Crop Sci , vol.41 , pp. 1884-1888
    • Richardson, M.D.1    Karcher, D.E.2    Purcell, L.C.3
  • 33
    • 77951053057 scopus 로고    scopus 로고
    • Sensitivities of normalized difference vegetation index and a green/red ratio index to cotton ground cover fraction
    • Ritchie, G.L., D.G. Sullivan, W.K. Vencill, C.W. Bednarz, and J.E. Hook. 2010. Sensitivities of normalized difference vegetation index and a green/red ratio index to cotton ground cover fraction. Crop Sci. 50:1000–1010. doi:10.2135/cropsci2009.04.0203.
    • (2010) Crop Sci , vol.50 , pp. 1000-1010
    • Ritchie, G.L.1    Sullivan, D.G.2    Vencill, W.K.3    Bednarz, C.W.4    Hook, J.E.5
  • 34
    • 84877935065 scopus 로고    scopus 로고
    • Variation in canopy duration in the perennial biofuel crop Miscanthus reveals complex associations with yield
    • Robson, P.R.H., K. Farrar, A.P. Gay, E.F. Jensen, J.C. Clifton-Brown, and I.S. Donnison. 2013. Variation in canopy duration in the perennial biofuel crop Miscanthus reveals complex associations with yield. J. Exp. Bot. 64:2373–2383. doi:10.1093/jxb/ert104.
    • (2013) J. Exp. Bot , vol.64 , pp. 2373-2383
    • Robson, P.R.H.1    Farrar, K.2    Gay, A.P.3    Jensen, E.F.4    Clifton-Brown, J.C.5    Donnison, I.S.6
  • 35
    • 0036265649 scopus 로고    scopus 로고
    • The influence of canopy green vegetation fraction on spectral measurements over native tallgrass prairie
    • Rundquist, B.C. 2002. The influence of canopy green vegetation fraction on spectral measurements over native tallgrass prairie. Remote Sens. Environ. 81:129–135. doi:10.1016/S0034-4257(01)00339-X
    • (2002) Remote Sens. Environ , vol.81 , pp. 129-135
    • Rundquist, B.C.1
  • 36
    • 84923369819 scopus 로고    scopus 로고
    • High-throughput phenotyping of cotton in multiple irrigation environments
    • Sharma, B., and G.L. Ritchie. 2015. High-throughput phenotyping of cotton in multiple irrigation environments. Crop Sci. 55:958–969. doi:10.2135/cropsci2014.04.0310.
    • (2015) Crop Sci , vol.55 , pp. 958-969
    • Sharma, B.1    Ritchie, G.L.2
  • 37
    • 0037594440 scopus 로고    scopus 로고
    • Automatic corn plant population measurement using machine vision
    • Shrestha, D.S., and B.L. Steward. 2003. Automatic corn plant population measurement using machine vision. Trans. ASAE 46:559–565. doi:10.13031/2013.12945.
    • (2003) Trans. ASAE , vol.46 , pp. 559-565
    • Shrestha, D.S.1    Steward, B.L.2
  • 38
    • 65849155515 scopus 로고    scopus 로고
    • AquaCrop-The FAO crop model to simulate yield response to water: I. Concepts and underlying principles
    • Steduto, P., T.C. Hsiao, D. Raes, and E. Fereres. 2009. AquaCrop-The FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agron. J. 101:426–437. doi:10.2134/agronj2008.0139s
    • (2009) Agron. J. , vol.101 , pp. 426-437
    • Steduto, P.1    Hsiao, T.C.2    Raes, D.3    Fereres, E.4
  • 39
    • 79959291019 scopus 로고    scopus 로고
    • Color image segmentation approach to monitor flowering in lesquerella
    • Thorp, K.R., and D.A. Dierig. 2011. Color image segmentation approach to monitor flowering in lesquerella. Ind. Crops Prod. 34:1150–1159. doi:10.1016/j.indcrop.2011.04.002.
    • (2011) Ind. Crops Prod , vol.34 , pp. 1150-1159
    • Thorp, K.R.1    Dierig, D.A.2
  • 40
    • 41749119154 scopus 로고    scopus 로고
    • Using aerial hyperspectral remote sensing imagery to estimate corn plant stand density. Trans
    • Thorp, K.R., B.L. Steward, A.L. Kaleita, and W.D. Batchelor. 2008. Using aerial hyperspectral remote sensing imagery to estimate corn plant stand density. Trans. ASABE 51:311–320. doi:10.13031/2013.24207.
    • (2008) ASABE , vol.51 , pp. 311-320
    • Thorp, K.R.1    Steward, B.L.2    Kaleita, A.L.3    Batchelor, W.D.4
  • 41
    • 0013693116 scopus 로고
    • Area-averaged vegetative cover fraction estimated from satellite data
    • Wittich, K.P., and O. Hansing. 1995. Area-averaged vegetative cover fraction estimated from satellite data. Int. J. Biometeorol. 38:209–215. doi:10.1007/BF01245391
    • (1995) Int. J. Biometeorol , vol.38 , pp. 209-215
    • Wittich, K.P.1    Hansing, O.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.