메뉴 건너뛰기




Volumn 3, Issue 3, 2015, Pages 361-370

Multi-dimensional scenario forecast for generation of multiple wind farms

Author keywords

Dynamic conditional correlation matrix; Gaussian copula; Multi dimensional scenario forecast; Sparse Bayesian learning (SBL); Support vector machine (SVM); Wind power generation forecast

Indexed keywords

ELECTRIC POWER GENERATION; ELECTRIC UTILITIES; ERRORS; PROBABILITY DENSITY FUNCTION; WEATHER FORECASTING; WIND POWER;

EID: 84945360722     PISSN: 21965625     EISSN: 21965420     Source Type: Journal    
DOI: 10.1007/s40565-015-0110-6     Document Type: Article
Times cited : (41)

References (28)
  • 1
    • 84945384118 scopus 로고    scopus 로고
    • Global wind energy council (GWEC)
    • Global wind statistics in 2013 (2014) Global wind energy council (GWEC), Brussels
    • (2014) Brussels
  • 3
    • 36749022145 scopus 로고    scopus 로고
    • An integration of ANN wind power estimation into unit commitment considering the forecasting uncertainty
    • Methaprayoon K, Yingvivatanapong C, Lee WJ et al (2007) An integration of ANN wind power estimation into unit commitment considering the forecasting uncertainty. IEEE Trans Ind Appl 43(6):1441–1448
    • (2007) IEEE Trans Ind Appl , vol.43 , Issue.6 , pp. 1441-1448
    • Methaprayoon, K.1    Yingvivatanapong, C.2    Lee, W.J.3
  • 4
    • 84883234089 scopus 로고    scopus 로고
    • Reserve setting and steady-state security assessment using wind power uncertainty forecast: a case study
    • Bessa RJ, Matos MA, Costa IC et al (2012) Reserve setting and steady-state security assessment using wind power uncertainty forecast: a case study. IEEE Trans Sustain Energy 3(4):827–836
    • (2012) IEEE Trans Sustain Energy , vol.3 , Issue.4 , pp. 827-836
    • Bessa, R.J.1    Matos, M.A.2    Costa, I.C.3
  • 5
    • 14344255817 scopus 로고    scopus 로고
    • Probabilistic wind power forecasts using local quantile regression
    • Bremnes JB (2004) Probabilistic wind power forecasts using local quantile regression. Wind Eng 7(1):47–54
    • (2004) Wind Eng , vol.7 , Issue.1 , pp. 47-54
    • Bremnes, J.B.1
  • 6
    • 84876475892 scopus 로고    scopus 로고
    • Sparse online warped Gaussian process for wind power probabilistic forecasting
    • Kou P, Gao F, Guan XH (2013) Sparse online warped Gaussian process for wind power probabilistic forecasting. Appl Energy 108(C):410–428
    • (2013) Appl Energy , vol.108 , Issue.C , pp. 410-428
    • Kou, P.1    Gao, F.2    Guan, X.H.3
  • 7
    • 77958487600 scopus 로고    scopus 로고
    • Conditional prediction intervals of wind power generation
    • Pinson P, Kariniotakis G (2010) Conditional prediction intervals of wind power generation. IEEE Trans Power Syst 25(4):1845–1856
    • (2010) IEEE Trans Power Syst , vol.25 , Issue.4 , pp. 1845-1856
    • Pinson, P.1    Kariniotakis, G.2
  • 8
    • 84890074971 scopus 로고    scopus 로고
    • Probabilistic short-term wind power forecast using componential sparse Bayesian learning
    • Yang M, Fan S, Lee WJ (2013) Probabilistic short-term wind power forecast using componential sparse Bayesian learning. IEEE Trans Ind Appl 49(6):2783–2792
    • (2013) IEEE Trans Ind Appl , vol.49 , Issue.6 , pp. 2783-2792
    • Yang, M.1    Fan, S.2    Lee, W.J.3
  • 13
    • 74149093707 scopus 로고    scopus 로고
    • From probabilistic forecasts to statistical scenarios of short-term wind power production
    • Pinson P, Madsen H, Nielsen HA et al (2009) From probabilistic forecasts to statistical scenarios of short-term wind power production. Wind Eng 12(1):51–62
    • (2009) Wind Eng , vol.12 , Issue.1 , pp. 51-62
    • Pinson, P.1    Madsen, H.2    Nielsen, H.A.3
  • 14
    • 34249753618 scopus 로고
    • Support vector machine
    • Cortes C, Vapnik V (1995) Support vector machine. Mach Learn 20(3):273–297
    • (1995) Mach Learn , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 19
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Tipping ME (2001) Sparse Bayesian learning and the relevance vector machine. J Mach Learn Res 1:211–244
    • (2001) J Mach Learn Res , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 21
    • 80755122841 scopus 로고    scopus 로고
    • Time-adaptive quantile-copula for wind power probabilistic forecasting
    • Bessa RJ, Miranda V, Botterud A et al (2012) Time-adaptive quantile-copula for wind power probabilistic forecasting. Renew Energy 40(1):29–39
    • (2012) Renew Energy , vol.40 , Issue.1 , pp. 29-39
    • Bessa, R.J.1    Miranda, V.2    Botterud, A.3
  • 23
    • 0028746131 scopus 로고
    • The probability integral transform and related results
    • Angus JE (1994) The probability integral transform and related results. SIAM Rev 36(4):652–654
    • (1994) SIAM Rev , vol.36 , Issue.4 , pp. 652-654
    • Angus, J.E.1
  • 26
    • 33847399672 scopus 로고    scopus 로고
    • Probabilistic forecasts, calibration and sharpness
    • Gneiting T, Balabdaoui F, Raftery AE (2007) Probabilistic forecasts, calibration and sharpness. J R Stat Soc B 69(2):243–268
    • (2007) J R Stat Soc B , vol.69 , Issue.2 , pp. 243-268
    • Gneiting, T.1    Balabdaoui, F.2    Raftery, A.E.3
  • 27
    • 48349105056 scopus 로고    scopus 로고
    • Assessing probabilistic forecasts of multivariate quantities, with an application to ensemble predictions of surface winds
    • Gneiting T, Stanberry LI, Grimit EP et al (2008) Assessing probabilistic forecasts of multivariate quantities, with an application to ensemble predictions of surface winds. Test 17(2):211–235
    • (2008) Test , vol.17 , Issue.2 , pp. 211-235
    • Gneiting, T.1    Stanberry, L.I.2    Grimit, E.P.3
  • 28
    • 0000505679 scopus 로고
    • A simple method for the construction of empirical confidence limits for economic forecasts
    • Williams WH, Goodman ML (1971) A simple method for the construction of empirical confidence limits for economic forecasts. J Am Stat Assoc 66:752–754
    • (1971) J Am Stat Assoc , vol.66 , pp. 752-754
    • Williams, W.H.1    Goodman, M.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.