메뉴 건너뛰기




Volumn 2336, Issue , 2002, Pages 257-263

Clustering large categorical data

Author keywords

[No Author keywords available]

Indexed keywords

DATA MINING; PARAMETER ESTIMATION;

EID: 84945314569     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/3-540-47887-6_25     Document Type: Conference Paper
Times cited : (19)

References (13)
  • 1
    • 0001626339 scopus 로고
    • A Classification EM Algorithm for Clustering and two Stochastic Versions
    • Celeux, G. and Govaert, G. (1992): A Classification EM Algorithm for Clustering and two Stochastic Versions. Computational Statistics & Data Analysis, 14, 315-332.
    • (1992) Computational Statistics & Data Analysis , vol.14 , pp. 315-332
    • Celeux, G.1    Govaert, G.2
  • 2
    • 0002629270 scopus 로고
    • Mixture Densities, Maximum Likelihood from incomplete data via the EM Algorithm
    • Dempster, A., Laird, N. and Rubin, D. (1977): Mixture Densities, Maximum Likelihood from incomplete data via the EM Algorithm. Journal of the Royal Statistical Society, 39, 1, 1-38.
    • (1977) Journal of the Royal Statistical Society , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.1    Laird, N.2    Rubin, D.3
  • 5
    • 0000014486 scopus 로고
    • Cluster Analysis of Multivariate Data: Efficiency versus Interpretability of Classification
    • Forgy, E. W. (1965): Cluster Analysis of Multivariate Data: Efficiency versus Interpretability of Classification. Biometrics, 21, 3, 768.
    • (1965) Biometrics , vol.21 , Issue.3 , pp. 768
    • Forgy, E.W.1
  • 6
    • 0030291360 scopus 로고    scopus 로고
    • Comparison of the Mixture and the Classification Maximum Likelihood in Cluster Analysis with binary data
    • Govaert, G. and Nadif, M. (1996): Comparison of the Mixture and the Classification Maximum Likelihood in Cluster Analysis with binary data. Comput. Statis. and Data Analysis, 23, 65-81.
    • (1996) Comput. Statis. and Data Analysis , vol.23 , pp. 65-81
    • Govaert, G.1    Nadif, M.2
  • 8
    • 27144536001 scopus 로고    scopus 로고
    • Extensions to the k-means Algorithm for Clustering Large Data Sets with Categorical Values
    • Huang, Z. (1998): Extensions to the k-means Algorithm for Clustering Large Data Sets with Categorical Values. Data Mining and Knowledge Discovery, 2, 283-304.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 283-304
    • Huang, Z.1
  • 12
    • 0029415780 scopus 로고
    • A Conceptual Version of the k-means Algorithm
    • Ralambondrainy H. (1995): A Conceptual Version of the k-means Algorithm, Pattern Recognition Letters, 16, pp. 1147-1157.
    • (1995) Pattern Recognition Letters , vol.16 , pp. 1147-1157
    • Ralambondrainy, H.1
  • 13
    • 84945258302 scopus 로고
    • Clustering Criteria and Multivariate Normal Mixture
    • Symons M. J. (1981): Clustering Criteria and Multivariate Normal Mixture, Biometrics, 27, pp 387-397
    • (1981) Biometrics , vol.27 , pp. 387-397
    • Symons, M.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.