-
1
-
-
33244474899
-
Electrodes with high power and high capacity for rechargeable lithium batteries
-
Kang, K., Meng, Y.S., Breger, J., Grey, C.P., Ceder, G., Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311 (2006), 977–980.
-
(2006)
Science
, vol.311
, pp. 977-980
-
-
Kang, K.1
Meng, Y.S.2
Breger, J.3
Grey, C.P.4
Ceder, G.5
-
2
-
-
84888440585
-
Favorable binding effect for improving the electrochemical performance of cobalt oxide anode for lithium ion batteries
-
Wang, W.L., Nguyen, V.H., Gu, H.B., Favorable binding effect for improving the electrochemical performance of cobalt oxide anode for lithium ion batteries. Appl. Surf. Sci. 288 (2014), 742–746.
-
(2014)
Appl. Surf. Sci.
, vol.288
, pp. 742-746
-
-
Wang, W.L.1
Nguyen, V.H.2
Gu, H.B.3
-
3
-
-
84877822013
-
Lithium alloys and metal oxides as high-capacity anode materials for lithium-ion batteries
-
Liang, C., Gao, M.X., Pan, H.G., Liu, Y.F., Yan, M., Lithium alloys and metal oxides as high-capacity anode materials for lithium-ion batteries. J. Alloy. Compd. 575 (2013), 246–256.
-
(2013)
J. Alloy. Compd.
, vol.575
, pp. 246-256
-
-
Liang, C.1
Gao, M.X.2
Pan, H.G.3
Liu, Y.F.4
Yan, M.5
-
4
-
-
0035890440
-
Issues and challenges facing rechargeable lithium batteries
-
Tarascon, J.M., Armand, M., Issues and challenges facing rechargeable lithium batteries. Nature 414 (2001), 359–367.
-
(2001)
Nature
, vol.414
, pp. 359-367
-
-
Tarascon, J.M.1
Armand, M.2
-
5
-
-
84883218744
-
A PEO-assisted electrospun silicon–graphene composite as an anode material for lithium-ion batteries
-
Zhao, S.H., Guo, Y.-G., A PEO-assisted electrospun silicon–graphene composite as an anode material for lithium-ion batteries. J. Mater. Chem. A 1 (2013), 9019–9023.
-
(2013)
J. Mater. Chem. A
, vol.1
, pp. 9019-9023
-
-
Zhao, S.H.1
Guo, Y.-G.2
-
6
-
-
84883434332
-
Si–SnO composite as an anode material in lithium ion batteries using novel polymer binder
-
Wang, W.L., Nguyen, V.H., Jin, E.M., Gu, H.B., Si–SnO composite as an anode material in lithium ion batteries using novel polymer binder. Mater. Express 3 (2013), 273–279.
-
(2013)
Mater. Express
, vol.3
, pp. 273-279
-
-
Wang, W.L.1
Nguyen, V.H.2
Jin, E.M.3
Gu, H.B.4
-
7
-
-
0033896106
-
Recent development of carbon materials for Li ion batteries
-
Endo, M., Kim, C., Nishimura, K., Fujino, T., Miyashita, K., Recent development of carbon materials for Li ion batteries. Carbon 38 (2000), 183–197.
-
(2000)
Carbon
, vol.38
, pp. 183-197
-
-
Endo, M.1
Kim, C.2
Nishimura, K.3
Fujino, T.4
Miyashita, K.5
-
8
-
-
84877822013
-
Lithium alloys and metal oxides as high-capacity anode materials for lithium-ion batteries
-
Liang, C., Gao, M.X., Pan, H.G., Liu, Y.F., Yan, M., Lithium alloys and metal oxides as high-capacity anode materials for lithium-ion batteries. J. Alloy. Compd. 575 (2013), 246–256.
-
(2013)
J. Alloy. Compd.
, vol.575
, pp. 246-256
-
-
Liang, C.1
Gao, M.X.2
Pan, H.G.3
Liu, Y.F.4
Yan, M.5
-
9
-
-
79955137580
-
Effects of electrolyte composition on lithium plating in lithium-ion cells
-
Smart, M.C., Ratnakumar, B.V., Effects of electrolyte composition on lithium plating in lithium-ion cells. J. Electrochem. Soc. 158 (2011), A379–A389.
-
(2011)
J. Electrochem. Soc.
, vol.158
, pp. A379-A389
-
-
Smart, M.C.1
Ratnakumar, B.V.2
-
10
-
-
79952281842
-
2 microspheres with core–shell structure as anode materials for lithium ion battery
-
2 microspheres with core–shell structure as anode materials for lithium ion battery. J. Power Sources 196 (2011), 4735–4740.
-
(2011)
J. Power Sources
, vol.196
, pp. 4735-4740
-
-
Lai, C.1
Zhang, H.Z.2
Li, G.R.3
Gao, X.P.4
-
11
-
-
84871913864
-
2 nanoparticle anodes for rechargeable lithium ion batteries
-
2 nanoparticle anodes for rechargeable lithium ion batteries. Electrochim. Acta 90 (2013), 112–118.
-
(2013)
Electrochim. Acta
, vol.90
, pp. 112-118
-
-
Rai, A.K.1
Anh, L.T.2
Gim, J.H.3
Mathew, V.4
Kang, J.W.5
Paul, B.J.6
Song, J.J.7
Kim, J.K.8
-
12
-
-
78651463490
-
2(B) nanoparticles for functionalized materials
-
2(B) nanoparticles for functionalized materials. Chem. Eur. J 17 (2011), 775–779.
-
(2011)
Chem. Eur. J
, vol.17
, pp. 775-779
-
-
Wessel, C.1
Zhao, L.2
Urban, S.3
Ostermann, R.4
Djerdj, I.5
Smarsly, B.M.6
Chen, L.7
Hu, Y.-S.8
Sallard, S.9
-
13
-
-
0029882755
-
Electrochemical and photoelectrochemical investigation of single-crystal anatase
-
Kavan, L., Gratzel, M., Gilbert, S.E., Klemenz, C., Scheel, H.J., Electrochemical and photoelectrochemical investigation of single-crystal anatase. J. Am. Chem. Soc. 118 (1996), 6716–6723.
-
(1996)
J. Am. Chem. Soc.
, vol.118
, pp. 6716-6723
-
-
Kavan, L.1
Gratzel, M.2
Gilbert, S.E.3
Klemenz, C.4
Scheel, H.J.5
-
16
-
-
55749102517
-
Synthesis of carbon coated nanoporous microcomposite and its rate capability for lithium ion battery
-
Fu, L.J., Yang, L.C., Shi, Y., Wang, B., Wu, Y.P., Synthesis of carbon coated nanoporous microcomposite and its rate capability for lithium ion battery. Microporous Mesoporous Mater. 117 (2009), 515–518.
-
(2009)
Microporous Mesoporous Mater.
, vol.117
, pp. 515-518
-
-
Fu, L.J.1
Yang, L.C.2
Shi, Y.3
Wang, B.4
Wu, Y.P.5
-
17
-
-
84869497069
-
2/graphene/PVdF films as anode materials for lithium-ion batteries
-
2/graphene/PVdF films as anode materials for lithium-ion batteries. Appl. Surf. Sci. 263 (2012), 54–57.
-
(2012)
Appl. Surf. Sci.
, vol.263
, pp. 54-57
-
-
Ren, H.M.1
Ding, Y.H.2
Chang, F.H.3
He, X.4
Feng, J.Q.5
Wang, C.F.6
Jiang, Y.7
Zhang, P.8
-
18
-
-
51249113010
-
Synthesis and electrochemical properties of Ni doped titanate nanotubes for lithium ion storage
-
Kim, D.H., Lee, K.S., Yoon, J.H., Jang, J.S., Choi, D.-K., Sun, Y.-K., Kim, S.-J., Lee, K.S., Synthesis and electrochemical properties of Ni doped titanate nanotubes for lithium ion storage. Appl. Surf. Sci. 254 (2008), 7718–7722.
-
(2008)
Appl. Surf. Sci.
, vol.254
, pp. 7718-7722
-
-
Kim, D.H.1
Lee, K.S.2
Yoon, J.H.3
Jang, J.S.4
Choi, D.-K.5
Sun, Y.-K.6
Kim, S.-J.7
Lee, K.S.8
-
21
-
-
84907599271
-
2–carbon nanocomposites using cheap raw materials as anode for lithium ion batteries
-
2–carbon nanocomposites using cheap raw materials as anode for lithium ion batteries. J. Alloy. Compd. 615 (2014), 1052–1055.
-
(2014)
J. Alloy. Compd.
, vol.615
, pp. 1052-1055
-
-
Tao, T.1
He, L.J.2
Li, J.3
Zhang, Y.H.4
-
22
-
-
84896841310
-
Electrospun silicon/carbon/titanium oxide composite nanofibers for lithium ion batteries
-
Wu, Q.L., Tran, T., Lu, W.Q., Wu, J., Electrospun silicon/carbon/titanium oxide composite nanofibers for lithium ion batteries. J. Power Sources 258 (2014), 39–45.
-
(2014)
J. Power Sources
, vol.258
, pp. 39-45
-
-
Wu, Q.L.1
Tran, T.2
Lu, W.Q.3
Wu, J.4
-
23
-
-
84873105275
-
2 microspheres with adjustable mesoporosity for the reversible storage of lithium ions
-
2 microspheres with adjustable mesoporosity for the reversible storage of lithium ions. J. Mater. Chem. 22 (2012), 24380–24385.
-
(2012)
J. Mater. Chem.
, vol.22
, pp. 24380-24385
-
-
Ma, Y.1
Ji, G.2
Ding, B.3
Lee, J.Y.4
-
25
-
-
49649105634
-
Nanomaterials for rechargeable lithium batteries
-
Bruce, P.G., Scrosati, B., Tarascon, J.-M., Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47 (2008), 2930–2946.
-
(2008)
Angew. Chem. Int. Ed.
, vol.47
, pp. 2930-2946
-
-
Bruce, P.G.1
Scrosati, B.2
Tarascon, J.-M.3
-
26
-
-
80051704551
-
2-B microspheres with superior rate performance for lithium ion batteries
-
2-B microspheres with superior rate performance for lithium ion batteries. Adv. Mater. 23 (2011), 3450–3454.
-
(2011)
Adv. Mater.
, vol.23
, pp. 3450-3454
-
-
Liu, H.S.1
Bi, Z.H.2
Sun, X.G.3
Unocic, R.R.4
Paranthaman, M.P.5
Dai, S.6
Brown, G.M.7
-
27
-
-
84888003991
-
3@polyaniline for lithium ion battery anodes
-
3@polyaniline for lithium ion battery anodes. Adv. Mater. 25 (2013), 6250–6255.
-
(2013)
Adv. Mater.
, vol.25
, pp. 6250-6255
-
-
Jeong, J.M.1
Choi, B.G.2
Lee, S.C.3
Lee, K.G.4
Chang, S.J.5
Han, Y.K.6
Lee, Y.B.7
Lee, H.U.8
Kwon, S.J.9
Lee, G.H.10
Lee, C.S.11
Huh, Y.S.12
-
28
-
-
84906779744
-
Tissue engineering of electrically responsive tissues using polyaniline based polymers: a review
-
Qazi, T.H., Rai, R., Boccaccini, A.R., Tissue engineering of electrically responsive tissues using polyaniline based polymers: a review. Biomaterials 35 (2014), 9068–9086.
-
(2014)
Biomaterials
, vol.35
, pp. 9068-9086
-
-
Qazi, T.H.1
Rai, R.2
Boccaccini, A.R.3
-
29
-
-
84901659752
-
Electromechanical properties of polyanilines prepared by two different approaches and their applicability in force measurements
-
Pina, C.D., Zappa, E., Busca, G., Sironi, A., Falletta, E., Electromechanical properties of polyanilines prepared by two different approaches and their applicability in force measurements. Sens. Actuators B: Chem. 201 (2014), 395–401.
-
(2014)
Sens. Actuators B: Chem.
, vol.201
, pp. 395-401
-
-
Pina, C.D.1
Zappa, E.2
Busca, G.3
Sironi, A.4
Falletta, E.5
-
30
-
-
35248883011
-
Direct low-temperature synthesis of rutile nanostructures in ionic liquids
-
Kaper, H., Endres, F., Djerdj, I., Antonietti, M., Smarsly, B.M., Maier, J., Hu, Y.-S., Direct low-temperature synthesis of rutile nanostructures in ionic liquids. Small 3 (2007), 1753–1763.
-
(2007)
Small
, vol.3
, pp. 1753-1763
-
-
Kaper, H.1
Endres, F.2
Djerdj, I.3
Antonietti, M.4
Smarsly, B.M.5
Maier, J.6
Hu, Y.-S.7
-
32
-
-
84880428634
-
2 nanofiber composite membrane as a promoter of Pt for formic acid electro-oxidation
-
2 nanofiber composite membrane as a promoter of Pt for formic acid electro-oxidation. ECS Electrochem. Lett. 2 (2013), H1–H4.
-
(2013)
ECS Electrochem. Lett.
, vol.2
, pp. H1-H4
-
-
Li, C.L.1
Wang, J.2
Wen, Y.F.3
Ning, Y.G.4
Wen, Y.5
Yuan, X.F.6
Li, M.H.7
Yang, D.M.8
-
33
-
-
84907904689
-
Surface functionalization effects on structural, conformational, and optical properties of polyaniline nanofibers
-
Borah, R., Banerjee, S., Kumar, A., Surface functionalization effects on structural, conformational, and optical properties of polyaniline nanofibers. Synth. Met. 197 (2014), 225–232.
-
(2014)
Synth. Met.
, vol.197
, pp. 225-232
-
-
Borah, R.1
Banerjee, S.2
Kumar, A.3
-
35
-
-
84904977779
-
2 anode for sodium-ion battery
-
2 anode for sodium-ion battery. ACS Appl. Mater. Interfaces 6 (2014), 11295–11301.
-
(2014)
ACS Appl. Mater. Interfaces
, vol.6
, pp. 11295-11301
-
-
Oh, S.M.1
Hwang, J.Y.2
Yoon, C.S.3
Lu, J.4
Amine, K.5
Belharouak, I.6
Sun, Y.K.7
-
36
-
-
52149090971
-
4-multiwalled carbon nanotubes composite cathode materials for lithium polymer battery
-
4-multiwalled carbon nanotubes composite cathode materials for lithium polymer battery. Electrochem. Commun. 10 (2008), 1537–1540.
-
(2008)
Electrochem. Commun.
, vol.10
, pp. 1537-1540
-
-
Jin, B.1
Jin, E.M.2
Park, K.H.3
Gu, H.B.4
-
38
-
-
84862792671
-
2
-
2. Electrochim. Acta 66 (2012), 88–93.
-
(2012)
Electrochim. Acta
, vol.66
, pp. 88-93
-
-
Yang, S.Y.1
Wang, X.Y.2
Yang, X.K.3
Bai, Y.S.4
Liu, Z.L.5
Shu, H.B.6
Wei, Q.L.7
-
39
-
-
84876011502
-
4/poly (sodium 4-styrenesulfonate)-multi walled carbon nanotube composite cathode material for lithium ion batteries
-
4/poly (sodium 4-styrenesulfonate)-multi walled carbon nanotube composite cathode material for lithium ion batteries. J. Alloy. Compd. 569 (2013), 29–34.
-
(2013)
J. Alloy. Compd.
, vol.569
, pp. 29-34
-
-
Nguyen, V.H.1
Wang, W.L.2
Jin, E.M.3
Gu, H.B.4
-
40
-
-
84886086710
-
4-graphite nanofiber composites as cathode materials for lithium ion batteries
-
4-graphite nanofiber composites as cathode materials for lithium ion batteries. J. Power Sources 244 (2013), 586–591.
-
(2013)
J. Power Sources
, vol.244
, pp. 586-591
-
-
Nguyen, V.H.1
Jin, E.M.2
Gu, H.B.3
|