메뉴 건너뛰기




Volumn , Issue , 2003, Pages 168-174

Improvement of naïve Bayes collaborative filtering using interval estimation

Author keywords

Algorithm design and analysis; Clustering algorithms; Collaboration; Collaborative work; Data mining; Filtering algorithms; Probability; Recommender systems; Scalability; Training data

Indexed keywords

ALGORITHMS; CLUSTERING ALGORITHMS; DATA MINING; PROBABILITY; RECOMMENDER SYSTEMS; SCALABILITY;

EID: 84945186210     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/WI.2003.1241189     Document Type: Conference Paper
Times cited : (18)

References (17)
  • 2
    • 0002051628 scopus 로고    scopus 로고
    • Empirical analysis of predictive algorithms for collaborative filtering
    • Gregory F. Cooper and Serafn Moral, editors, San Francisco, July 24-26 Morgan Kaufmann
    • J.S. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predictive algorithms for collaborative filtering. In Gregory F. Cooper and Serafn Moral, editors, Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI-98), pages 43-52, San Francisco, July 24-26 1998. Morgan Kaufmann.
    • (1998) Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI-98) , pp. 43-52
    • Breese, J.S.1    Heckerman, D.2    Kadie, C.3
  • 5
    • 77954724530 scopus 로고    scopus 로고
    • Using probabilistic relational models for collaborative filtering
    • Springer, editor
    • L. Getoor and M. Sahami. Using probabilistic relational models for collaborative filtering. In Springer, editor, Proceedings WEBKDD99, 1999.
    • Proceedings WEBKDD99, 1999
    • Getoor, L.1    Sahami, M.2
  • 6
    • 0035528674 scopus 로고    scopus 로고
    • Idiot's Bayes - Not so stupid after all?
    • D.J. Hand and K. Yu. Idiot's Bayes - not so stupid after all? International Statistical Review, 69(3):385-398, 2001.
    • (2001) International Statistical Review , vol.69 , Issue.3 , pp. 385-398
    • Hand, D.J.1    Yu, K.2
  • 8
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model selection. In IJCAI, pages 1137-1145, 1995.
    • (1995) IJCAI , pp. 1137-1145
    • Kohavi, R.1
  • 12
    • 0031215849 scopus 로고    scopus 로고
    • The equation for response to selection and its use for prediction
    • H. Mühlenbein. The equation for response to selection and its use for prediction. Evolutionary Computation, 5:303-346, 1998.
    • (1998) Evolutionary Computation , vol.5 , pp. 303-346
    • Mühlenbein, H.1
  • 14
    • 0012253296 scopus 로고    scopus 로고
    • Probabilistic models for unified collaborative and content-based recommendation in sparse-data environments
    • Seattle, Washington, August 2-5
    • A. Popescul, L. Ungar, D. Pennock, and S. Lawrence. Probabilistic models for unified collaborative and content-based recommendation in sparse-data environments. In 17th Conference on Uncertainty in Artificial Intelligence, pages 437-444, Seattle, Washington, August 2-5 2001.
    • (2001) 17th Conference on Uncertainty in Artificial Intelligence , pp. 437-444
    • Popescul, A.1    Ungar, L.2    Pennock, D.3    Lawrence, S.4
  • 17
    • 0029179043 scopus 로고
    • Social information filtering: Algorithms for automating word of mouth
    • Proceedings of ACM CHI'95 Conference on Human Factors in Computing Systems
    • U. Shardanand and P. Maes. Social information filtering: Algorithms for automating word of mouth. In Proceedings of ACM CHI'95 Conference on Human Factors in Computing Systems, volume Volume 1 of papers: Using the Information of Others, pages 210-217, 1995.
    • (1995) Papers: Using the Information of Others , vol.1 , pp. 210-217
    • Shardanand, U.1    Maes, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.