-
3
-
-
0032540476
-
A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting
-
Khaselev O (1988) A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280:425–427
-
(1988)
Science
, vol.280
, pp. 425-427
-
-
Khaselev, O.1
-
4
-
-
57649200354
-
Review on thermal energy storage with phase change materials and applications
-
Sharma A, Tyagi VV, Chen CR, Buddhi D (2009) Review on thermal energy storage with phase change materials and applications. Renew Sust Energy Rev 13:318–345
-
(2009)
Renew Sust Energy Rev
, vol.13
, pp. 318-345
-
-
Sharma, A.1
Tyagi, V.V.2
Chen, C.R.3
Buddhi, D.4
-
5
-
-
35348875044
-
Electrochemical photolysis of water at a semiconductor electrode
-
Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38
-
(1972)
Nature
, vol.238
, pp. 37-38
-
-
Fujishima, A.1
Honda, K.2
-
10
-
-
31544439938
-
2 nanotube arrays with high aspect ratios for efficient solar water splitting
-
2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett 6:24–28
-
(2006)
Nano Lett
, vol.6
, pp. 24-28
-
-
Park, J.H.1
Kim, S.2
Bard, A.J.3
-
11
-
-
80053030427
-
2 with dominant high-energy {001} facets: synthesis, properties, and applications
-
2 with dominant high-energy {001} facets: synthesis, properties, and applications. Chem Mater 23:4085–4093
-
(2011)
Chem Mater
, vol.23
, pp. 4085-4093
-
-
Liu, S.J.1
Yu, J.G.2
Jaroniec, M.3
-
13
-
-
84961290672
-
Engineering heterogeneous semiconductors for solar water splitting
-
Li X, Yu JG, Low JX, Fang YP, Xiao J, Chen XB (2015) Engineering heterogeneous semiconductors for solar water splitting. J Mater Chem A 3:2485–2534
-
(2015)
J Mater Chem A
, vol.3
, pp. 2485-2534
-
-
Li, X.1
Yu, J.G.2
Low, J.X.3
Fang, Y.P.4
Xiao, J.5
Chen, X.B.6
-
15
-
-
63049113001
-
2@CdS nanorods for photovoltaic applications
-
2@CdS nanorods for photovoltaic applications. J Phys Chem C 113:3494–3501
-
(2009)
J Phys Chem C
, vol.113
, pp. 3494-3501
-
-
Das, K.1
De, S.K.2
-
16
-
-
84861943327
-
2/(CdS, CdSe, CdSeS) nanorod heterostructures and photoelectrochemical properties
-
2/(CdS, CdSe, CdSeS) nanorod heterostructures and photoelectrochemical properties. J Phys Chem C 116:11956–11963
-
(2012)
J Phys Chem C
, vol.116
, pp. 11956-11963
-
-
Luo, J.S.1
Ma, L.2
He, T.3
Ng, C.F.4
Wang, S.H.5
Sun, H.D.6
Fan, H.J.7
-
17
-
-
84861185750
-
Roles of cocatalysts in Pt-PdS/CdS with exceptionally high quantum efficiency for photocatalytic hydrogen production
-
Yang J, Yan H, Wang X, Wen F, Wang Z, Fan D, Shi JY, Li C (2012) Roles of cocatalysts in Pt-PdS/CdS with exceptionally high quantum efficiency for photocatalytic hydrogen production. J Catal 290:151–157
-
(2012)
J Catal
, vol.290
, pp. 151-157
-
-
Yang, J.1
Yan, H.2
Wang, X.3
Wen, F.4
Wang, Z.5
Fan, D.6
Shi, J.Y.7
Li, C.8
-
18
-
-
84886605254
-
2 nanotube/Ti mesh electrode and application in photoelectrocatalytic cell system for degradation of methylene blue under visible light illumination
-
2 nanotube/Ti mesh electrode and application in photoelectrocatalytic cell system for degradation of methylene blue under visible light illumination. Asian J Chem 25:8527–8532
-
(2013)
Asian J Chem
, vol.25
, pp. 8527-8532
-
-
Zeng, Q.Y.1
Li, X.J.2
Xi, M.3
Wu, L.P.4
Xu, Z.5
Zhou, Z.Y.6
-
19
-
-
84896539353
-
Nano-CdS confined within titanate nanotubes for efficient photocatalytic hydrogen production under visible light illumination
-
Long LZ, Yu X, Wu LP, Li J, Li XJ (2014) Nano-CdS confined within titanate nanotubes for efficient photocatalytic hydrogen production under visible light illumination. Nanotechnology 25:035603
-
(2014)
Nanotechnology
, vol.25
, pp. 035603
-
-
Long, L.Z.1
Yu, X.2
Wu, L.P.3
Li, J.4
Li, X.J.5
-
21
-
-
84926387798
-
2 flower-like structures on the surface of titania nanorods with CuS counter electrode
-
2 flower-like structures on the surface of titania nanorods with CuS counter electrode. Nanoscale Res Lett 10:146–156
-
(2015)
Nanoscale Res Lett
, vol.10
, pp. 146-156
-
-
Buatong, N.1
Tang, I.M.2
Pon-On, W.3
-
22
-
-
68749114050
-
Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst
-
Yan HJ, Yang JH, Ma GJ, Wu GP, Zong X, Lei ZB, Shi JY, Li C (2009) Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst. J Catal 266:165–168
-
(2009)
J Catal
, vol.266
, pp. 165-168
-
-
Yan, H.J.1
Yang, J.H.2
Ma, G.J.3
Wu, G.P.4
Zong, X.5
Lei, Z.B.6
Shi, J.Y.7
Li, C.8
-
23
-
-
84859901413
-
Quantum dot monolayer sensitized ZnO nanowire-array photoelectrodes: true efficiency for water splitting
-
Chen HM, Chen CK, Chang YC, Tsai CW, Liu RS, Hu SF, Chang WS, Chen KH (2010) Quantum dot monolayer sensitized ZnO nanowire-array photoelectrodes: true efficiency for water splitting. Angew Chem 122:6102–6105
-
(2010)
Angew Chem
, vol.122
, pp. 6102-6105
-
-
Chen, H.M.1
Chen, C.K.2
Chang, Y.C.3
Tsai, C.W.4
Liu, R.S.5
Hu, S.F.6
Chang, W.S.7
Chen, K.H.8
-
25
-
-
84872175550
-
Harnessing infrared photons for photoelectrochemical hydrogen generation. A PbS quantum dot based “quasi-artificial leaf
-
Trevisan R, Rodenas P, Gonzalez-Pedro V, Sima C, Sanchez RS, Barea EM, Mora-Sero I, Fabregat-Santiago F, Gimenez S (2013) Harnessing infrared photons for photoelectrochemical hydrogen generation. A PbS quantum dot based “quasi-artificial leaf”. J Phys Chem Lett 4:141–146.
-
(2013)
J Phys Chem Lett
, vol.4
, pp. 141-146
-
-
Trevisan, R.1
Rodenas, P.2
Gonzalez-Pedro, V.3
Sima, C.4
Sanchez, R.S.5
Barea, E.M.6
Mora-Sero, I.7
Fabregat-Santiago, F.8
Gimenez, S.9
-
27
-
-
84904874183
-
Advanced three-component ZnO/Ag/CdS nanocomposite photoanode for photocatalytic water splitting
-
Zhang XL, Li Y, Zhao JL, Wang SG, Li YD, Dai HT, Sun XW (2014) Advanced three-component ZnO/Ag/CdS nanocomposite photoanode for photocatalytic water splitting. J Power Sources 269:466–472.
-
(2014)
J Power Sources
, vol.269
, pp. 466-472
-
-
Zhang, X.L.1
Li, Y.2
Zhao, J.L.3
Wang, S.G.4
Li, Y.D.5
Dai, H.T.6
Sun, X.W.7
-
28
-
-
84907718648
-
Determination of heterojunction band offsets between CdS bulk and PbS quantum dots using photoelectron spectroscopy
-
Bhandari KP, Choi H, Jeong S, Mahabaduge H, Ellingson RJ (2014) Determination of heterojunction band offsets between CdS bulk and PbS quantum dots using photoelectron spectroscopy. Appl Phys Lett 105:131604–131608
-
(2014)
Appl Phys Lett
, vol.105
, pp. 131604-131608
-
-
Bhandari, K.P.1
Choi, H.2
Jeong, S.3
Mahabaduge, H.4
Ellingson, R.J.5
-
29
-
-
84937734703
-
CdS/Graphene nanocomposite photocatalysts
-
Li Q, Li X, Wageh S, Al-Ghamdi AA, Yu JG (2015) CdS/Graphene nanocomposite photocatalysts. Adv Energy Mater 5:1500010
-
(2015)
Adv Energy Mater
, vol.5
, pp. 1500010
-
-
Li, Q.1
Li, X.2
Wageh, S.3
Al-Ghamdi, A.A.4
Yu, J.G.5
-
30
-
-
84921033094
-
One-pot synthesis of CdS nanocrystals hybridized with single-layer transition-metal dichalcogenide nanosheets for efficient photocatalytic hydrogen evolution
-
Chen J, Wu XJ, Yin LS, Li B, Hong X, Fan ZX, Chen B, Xue C, Zhang H (2015) One-pot synthesis of CdS nanocrystals hybridized with single-layer transition-metal dichalcogenide nanosheets for efficient photocatalytic hydrogen evolution. Angew Chem Int Ed 54:1210–1214.
-
(2015)
Angew Chem Int Ed
, vol.54
, pp. 1210-1214
-
-
Chen, J.1
Wu, X.J.2
Yin, L.S.3
Li, B.4
Hong, X.5
Fan, Z.X.6
Chen, B.7
Xue, C.8
Zhang, H.9
-
33
-
-
84872316741
-
4 nanosheets for highly efficient photocatalytic hydrogen generation under visible light irradiation
-
4 nanosheets for highly efficient photocatalytic hydrogen generation under visible light irradiation. Int J Hydrogen Energy 38:1258–1266.
-
(2013)
Int J Hydrogen Energy
, vol.38
, pp. 1258-1266
-
-
Cao, S.W.1
Yuan, Y.P.2
Fang, J.3
Shahjamali, M.M.4
Boey, F.Y.5
Barber, J.6
Loo, S.C.J.7
Xue, C.8
-
34
-
-
84455205497
-
2 to methanol under visible light irradiation
-
2 to methanol under visible light irradiation. Chem Eng J 180:151–158.
-
(2012)
Chem Eng J
, vol.180
, pp. 151-158
-
-
Li, X.1
Liu, H.L.2
Luo, D.L.3
Li, J.T.4
Huang, Y.5
Li, H.L.6
Fang, Y.P.7
Xu, Y.8
Zhu, L.9
-
35
-
-
84899523604
-
Improving the efficiency of hematite nanorods for photoelectrochemical water splitting by doping with manganese
-
Gurudayal, Chiam SY, Kumar MH, Bassi PS, Seng HL, Barber J, Wong LH (2014) Improving the efficiency of hematite nanorods for photoelectrochemical water splitting by doping with manganese. ACS Appl Mater Interfaces 6:5852–5859
-
(2014)
ACS Appl Mater Interfaces
, vol.6
, pp. 5852-5859
-
-
Gurudayal1
Chiam, S.Y.2
Kumar, M.H.3
Bassi, P.S.4
Seng, H.L.5
Barber, J.6
Wong, L.H.7
-
36
-
-
84867047382
-
Raising the thermoelectric performance of p-Type PbS with endotaxial nanostructuring and valence-band offset engineering using CdS and ZnS
-
Zhao LD, He JQ, Hao SQ, Wu CI, Hogan TP, Wolverton C, Dravid VP, Kanatzidis MG (2012) Raising the thermoelectric performance of p-Type PbS with endotaxial nanostructuring and valence-band offset engineering using CdS and ZnS. J Am Chem Soc 134:16327–16336.
-
(2012)
J Am Chem Soc
, vol.134
, pp. 16327-16336
-
-
Zhao, L.D.1
He, J.Q.2
Hao, S.Q.3
Wu, C.I.4
Hogan, T.P.5
Wolverton, C.6
Dravid, V.P.7
Kanatzidis, M.G.8
-
37
-
-
84924873205
-
2 and ZnO nanostructures for solar-driven water splitting
-
2 and ZnO nanostructures for solar-driven water splitting. Phys Chem Chem Phys 17:7775–7786.
-
(2015)
Phys Chem Chem Phys
, vol.17
, pp. 7775-7786
-
-
Hernández, S.1
Hidalgo, D.2
Sacco, A.3
Chiodoni, A.4
Lamberti, A.5
Cauda, V.6
Tresso, E.7
Saracco, G.8
-
39
-
-
84926343793
-
Core-shell hematite nanorods: a simple method to improve the charge transfer in the photoanode for photoelectrochemical water splitting
-
Gurudayal, Chee PM, Boix PP, Ge H, Yanan F, Barber J, Wong LH (2015) Core-shell hematite nanorods: a simple method to improve the charge transfer in the photoanode for photoelectrochemical water splitting. ACS Appl Mater Interfaces 7:6852–6859
-
(2015)
ACS Appl Mater Interfaces
, vol.7
, pp. 6852-6859
-
-
Gurudayal1
Chee, P.M.2
Boix, P.P.3
Ge, H.4
Yanan, F.5
Barber, J.6
Wong, L.H.7
|