메뉴 건너뛰기




Volumn , Issue , 2015, Pages 245-275

Overview of overlapping partitional clustering methods

Author keywords

Evaluation of overlapping clustering methods; Large overlaps; Non disjoint partitioning; Non exclusive clusters; Overlapping clustering; Partitional clustering methods; Small overlaps

Indexed keywords

CLUSTER ANALYSIS; QUALITY CONTROL;

EID: 84944598557     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1007/978-3-319-09259-1_8     Document Type: Chapter
Times cited : (26)

References (51)
  • 1
    • 67650932694 scopus 로고    scopus 로고
    • A comparison of extrinsic clustering evaluation metrics based on formal constraints
    • Amigo E., Gonzalo J., Artiles J., Verdejo F. (2009) A comparison of extrinsic clustering evaluation metrics based on formal constraints. Inf Retrieval 12 (4):461-486.
    • (2009) Inf Retrieval , vol.12 , Issue.4 , pp. 461-486
    • Amigo, E.1    Gonzalo, J.2    Artiles, J.3    Verdejo, F.4
  • 4
    • 84928545917 scopus 로고    scopus 로고
    • Overlapping patterns recognition with linear and non-linear separations using positive definite kernels
    • BenN’Cir C., Essoussi N. (2012) Overlapping patterns recognition with linear and non-linear separations using positive definite kernels. Intern J Comput Appl 56:1-8.
    • (2012) Intern J Comput Appl , vol.56 , pp. 1-8
    • Ben N’ Cir, C.1    Essoussi, N.2
  • 7
    • 84892062680 scopus 로고    scopus 로고
    • Grouping Multidimensional Data-Recent Advances in Clustering, Springer
    • Berkhin P. (2006) A survey of clustering data mining techniques. Grouping Multidimensional Data-Recent Advances in Clustering, Springer pp 28-71.
    • (2006) A Survey of Clustering Data Mining Techniques , pp. 28-71
    • Berkhin, P.1
  • 8
    • 0037446987 scopus 로고    scopus 로고
    • The k-weak hierarchical representations: An extension of the indexed closed weak hierarchies
    • Bertrand P., Janowitz M. (2003) The k-weak hierarchical representations: an extension of the indexed closed weak hierarchies. Discrete Appl Math 127 (2):199-220.
    • (2003) Discrete Appl Math , vol.127 , Issue.2 , pp. 199-220
    • Bertrand, P.1    Janowitz, M.2
  • 11
    • 84875417842 scopus 로고    scopus 로고
    • Overlapping correlation clustering
    • Bonchi F., Gionis A., Ukkonen A. (2013) Overlapping correlation clustering. Knowl Inf Syst 35 (1):1-32.
    • (2013) Knowl Inf Syst , vol.35 , Issue.1 , pp. 1-32
    • Bonchi, F.1    Gionis, A.2    Ukkonen, A.3
  • 13
    • 84866127615 scopus 로고    scopus 로고
    • A comparative study of efficient initialization methods for the k-means clustering algorithm
    • Celebi M. E., Kingravi H., Vela P-A. (2013) A comparative study of efficient initialization methods for the k-means clustering algorithm. Expert Syst Appl 40 (1):200-210.
    • (2013) Expert Syst Appl , vol.40 , Issue.1 , pp. 200-210
    • Celebi, M.E.1    Kingravi, H.2    Vela, P.-A.3
  • 16
    • 84869886592 scopus 로고    scopus 로고
    • Osom: A method for building overlapping topological maps
    • Cleuziou G. (2013) Osom: a method for building overlapping topological maps. Pattern Recognit Lett 34 (3):239-246.
    • (2013) Pattern Recognit Lett , vol.34 , Issue.3 , pp. 239-246
    • Cleuziou, G.1
  • 17
    • 44949217362 scopus 로고    scopus 로고
    • Clearing the fog: Fuzzy, overlapping groups for social networks
    • Davis G. B., Carley K. M. (2008) Clearing the fog: fuzzy, overlapping groups for social networks. Soc Netw 30 (3):201-212.
    • (2008) Soc Netw , vol.30 , Issue.3 , pp. 201-212
    • Davis, G.B.1    Carley, K.M.2
  • 18
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm
    • Dempster A. P., Laird N. M., Rubin D. B. (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc 39 (1):1-38.
    • (1977) J R Stat Soc , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 19
    • 46549085943 scopus 로고    scopus 로고
    • Algorithms for additive clustering of rectangular data tables
    • Depril D., Van Mechelen I., Mirkin B. (2008) Algorithms for additive clustering of rectangular data tables. Comput Stat Data Anal 52 (11):4923-4938.
    • (2008) Comput Stat Data Anal , vol.52 , Issue.11 , pp. 4923-4938
    • Depril, D.1    Van Mechelen, I.2    Mirkin, B.3
  • 20
    • 84866463432 scopus 로고    scopus 로고
    • Low dimensional additive overlapping clustering
    • Depril D., Mechelen I. V., Wilderjans T. F. (2012) Low dimensional additive overlapping clustering. J Classif 29 (3):297-320.
    • (2012) J Classif , vol.29 , Issue.3 , pp. 297-320
    • Depril, D.1    Mechelen, I.V.2    Wilderjans, T.F.3
  • 25
    • 77249134035 scopus 로고    scopus 로고
    • Dynamic hierarchical algorithms for document clustering
    • Gil-García R., Pons-Porrata A. (2010) Dynamic hierarchical algorithms for document clustering. Pattern Recognit Lett 31 (6):469-477.
    • (2010) Pattern Recognit Lett , vol.31 , Issue.6 , pp. 469-477
    • Gil-García, R.1    Pons-Porrata, A.2
  • 27
    • 38049120277 scopus 로고    scopus 로고
    • An algorithm to find overlapping community structure in networks
    • Gregory S. (2007) An algorithm to find overlapping community structure in networks. In: Knowledge discovery in databases: PKDD 2007, vol 4702, pp 91-102.
    • (2007) Knowledge Discovery in Databases: PKDD 2007 , vol.4702 , pp. 91-102
    • Gregory, S.1
  • 28
    • 56049112624 scopus 로고    scopus 로고
    • A fast algorithm to find overlapping communities in networks
    • Gregory S. (2008) A fast algorithm to find overlapping communities in networks. In: Machine learning and knowledge discovery in databases, vol 5211, pp 408-423.
    • (2008) Machine Learning and Knowledge Discovery in Databases , vol.5211 , pp. 408-423
    • Gregory, S.1
  • 31
    • 77950369345 scopus 로고    scopus 로고
    • Data clustering: 50 years beyond k-means
    • Jain A. K. (2010) Data clustering: 50 years beyond k-means. Pattern Recognit Lett 31 (8):651-666.
    • (2010) Pattern Recognit Lett , vol.31 , Issue.8 , pp. 651-666
    • Jain, A.K.1
  • 32
    • 0027595430 scopus 로고
    • A possibilistic approach to clustering
    • Krishnapuram R., Keller J. M. (1993) A possibilistic approach to clustering. IEEE Trans Fuzzy Syst 1 (2):98-110.
    • (1993) IEEE Trans Fuzzy Syst , vol.1 , Issue.2 , pp. 98-110
    • Krishnapuram, R.1    Keller, J.M.2
  • 33
    • 3042789571 scopus 로고    scopus 로고
    • Interval set clustering of web users with rough k-means
    • Lingras P., West C. (2004) Interval set clustering of web users with rough k-means. J Intell Inf Syst 23 (1):5-16.
    • (2004) J Intell Inf Syst , vol.23 , Issue.1 , pp. 5-16
    • Lingras, P.1    West, C.2
  • 34
    • 83455237493 scopus 로고    scopus 로고
    • Belief c-means: An extension of fuzzy c-means algorithm in belief functions framework
    • Liu Z-G., Dezert J., Mercier G., Pan Q. (2012) Belief c-means: an extension of fuzzy c-means algorithm in belief functions framework. Pattern Recognit Lett 33 (3):291-300.
    • (2012) Pattern Recognit Lett , vol.33 , Issue.3 , pp. 291-300
    • Liu, Z.-G.1    Dezert, J.2    Mercier, G.3    Pan, Q.4
  • 37
    • 36749023291 scopus 로고    scopus 로고
    • Ecm: An evidential version of the fuzzy c-means algorithm
    • Masson M-H., Denoeux T. (2008) Ecm: an evidential version of the fuzzy c-means algorithm. Pattern Recognit 41 (4):1384-1397.
    • (2008) Pattern Recognit , vol.41 , Issue.4 , pp. 1384-1397
    • Masson, M.-H.1    Denoeux, T.2
  • 38
    • 84904779621 scopus 로고
    • Method of principal cluster analysis
    • Mirkin B. G. (1987) Method of principal cluster analysis. Autom Remote Control 48:1379-1386.
    • (1987) Autom Remote Control , vol.48 , pp. 1379-1386
    • Mirkin, B.G.1
  • 39
    • 0001090009 scopus 로고
    • A sequential fitting procedure for linear data analysis models
    • Mirkin B. G. (1990) A sequential fitting procedure for linear data analysis models. J Classif 7 (2):167-195.
    • (1990) J Classif , vol.7 , Issue.2 , pp. 167-195
    • Mirkin, B.G.1
  • 43
    • 74549120273 scopus 로고    scopus 로고
    • Scalable learning of collective behavior based on sparse social dimensions
    • Tang L., Liu H. (2009) Scalable learning of collective behavior based on sparse social dimensions. In: ACM conference on information and knowledge management, pp 1107-1116.
    • (2009) ACM Conference on Information and Knowledge Management , pp. 1107-1116
    • Tang, L.1    Liu, H.2
  • 45
    • 81755178394 scopus 로고    scopus 로고
    • Uncovering overlapping community structure
    • Wang Q., Fleury E. (2011) Uncovering overlapping community structure. In: Complex networks, vol 116, pp 176-186.
    • (2011) Complex Networks , vol.116 , pp. 176-186
    • Wang, Q.1    Fleury, E.2
  • 48
    • 79953694168 scopus 로고    scopus 로고
    • Adproclus: A graphical user interface for fitting additive profile clustering models to object by variable data matrices
    • Wilderjans T., Ceulemans E., Mechelen I., Depril D. (2011) Adproclus: a graphical user interface for fitting additive profile clustering models to object by variable data matrices. Behav Res Methods 43 (1):56-65.
    • (2011) Behav Res Methods , vol.43 , Issue.1 , pp. 56-65
    • Wilderjans, T.1    Ceulemans, E.2    Mechelen, I.3    Depril, D.4
  • 49
    • 84874518880 scopus 로고    scopus 로고
    • Additive biclustering: A comparison of one new and two existing als algorithms
    • Wilderjans T. F., Depril D., Mechelen I. V. (2013) Additive biclustering: a comparison of one new and two existing als algorithms. J Classif 30 (1):56-74.
    • (2013) J Classif , vol.30 , Issue.1 , pp. 56-74
    • Wilderjans, T.F.1    Depril, D.2    Mechelen, I.V.3
  • 50
    • 27144441097 scopus 로고    scopus 로고
    • An evaluation of statistical approaches to text categorization
    • Yang Y. (1999) An evaluation of statistical approaches to text categorization. J Inf Retrieval 1:67-88.
    • (1999) J Inf Retrieval , vol.1 , pp. 67-88
    • Yang, Y.1
  • 51
    • 33751166180 scopus 로고    scopus 로고
    • Identification of overlapping community structure in complex networks using fuzzy c-means clustering
    • Zhang S., Wang R-S., Zhang X-S. (2007) Identification of overlapping community structure in complex networks using fuzzy c-means clustering. Phys A Stat Mech Appl 374 (1):483-490.
    • (2007) Phys a Stat Mech Appl , vol.374 , Issue.1 , pp. 483-490
    • Zhang, S.1    Wang, R.-S.2    Zhang, X.-S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.