메뉴 건너뛰기




Volumn 16, Issue 11, 2015, Pages 665-681

Exploring the emerging complexity in transcriptional regulation of energy homeostasis

Author keywords

[No Author keywords available]

Indexed keywords

CELL NUCLEUS RECEPTOR; LIGAND; MEMBRANE RECEPTOR; TRANSCRIPTION FACTOR; UNTRANSLATED RNA;

EID: 84944441503     PISSN: 14710056     EISSN: 14710064     Source Type: Journal    
DOI: 10.1038/nrg3941     Document Type: Review
Times cited : (62)

References (157)
  • 1
    • 0036469065 scopus 로고    scopus 로고
    • Signal transduction and the control of gene expression
    • Brivanlou, A. H. & Darnell, J. E. Signal transduction and the control of gene expression. Science 295, 813-818 (2002).
    • (2002) Science , vol.295 , pp. 813-818
    • Brivanlou, A.H.1    Darnell, J.E.2
  • 2
    • 84888353864 scopus 로고    scopus 로고
    • The orphan nuclear receptors at their 25-year reunion
    • Mullican, S. E., DiSpirito, J. R. & Lazar, M. A. The orphan nuclear receptors at their 25-year reunion. J. Mol. Endocrinol. 51, T115-T140 (2013).
    • (2013) J. Mol. Endocrinol. , vol.51 , pp. T115-T140
    • Mullican, S.E.1    Dispirito, J.R.2    Lazar, M.A.3
  • 3
    • 84897147399 scopus 로고    scopus 로고
    • Nuclear receptors, RXR, and the Big Bang
    • Evans, R. M. & Mangelsdorf, D. J. Nuclear receptors, RXR, and the Big Bang. Cell 157, 255-266 (2014).
    • (2014) Cell , vol.157 , pp. 255-266
    • Evans, R.M.1    Mangelsdorf, D.J.2
  • 4
    • 47549088250 scopus 로고    scopus 로고
    • +-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control
    • +-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134, 329-340 (2008).
    • (2008) Cell , vol.134 , pp. 329-340
    • Nakahata, Y.1
  • 5
    • 2942621879 scopus 로고    scopus 로고
    • In vivo activation of PPAR target genes by RXR homodimers
    • IJpenberg, A. et al. In vivo activation of PPAR target genes by RXR homodimers. EMBO J. 23, 2083-2091 (2004).
    • (2004) EMBO J. , vol.23 , pp. 2083-2091
    • Ijpenberg, A.1
  • 6
    • 84949115098 scopus 로고    scopus 로고
    • PPARs and ERRs: Molecular mediators of mitochondrial metabolism
    • Fan, W. & Evans, R. PPARs and ERRs: molecular mediators of mitochondrial metabolism. Curr. Opin. Cell Biol. 33, 49-54 (2015).
    • (2015) Curr. Opin. Cell Biol. , vol.33 , pp. 49-54
    • Fan, W.1    Evans, R.2
  • 7
    • 84858796689 scopus 로고    scopus 로고
    • Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR
    • Calkin, A. C. & Tontonoz, P. Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR. Nat. Rev. Mol. Cell Biol. 13, 213-224 (2012).
    • (2012) Nat. Rev. Mol. Cell Biol. , vol.13 , pp. 213-224
    • Calkin, A.C.1    Tontonoz, P.2
  • 8
    • 0029113123 scopus 로고
    • Exclusive homodimerization of the orphan receptor hepatocyte nuclear factor 4 defines a new subclass of nuclear receptors
    • Jiang, G., Nepomuceno, L., Hopkins, K. & Sladek, F. M. Exclusive homodimerization of the orphan receptor hepatocyte nuclear factor 4 defines a new subclass of nuclear receptors. Mol. Cell. Biol. 15, 5131-5143 (1995).
    • (1995) Mol. Cell. Biol. , vol.15 , pp. 5131-5143
    • Jiang, G.1    Nepomuceno, L.2    Hopkins, K.3    Sladek, F.M.4
  • 9
    • 66049149024 scopus 로고    scopus 로고
    • Identification of an endogenous ligand bound to a native orphan nuclear receptor
    • Yuan, X. et al. Identification of an endogenous ligand bound to a native orphan nuclear receptor. PLoS ONE 4, e5609 (2009).
    • (2009) PLoS ONE , vol.4 , pp. e5609
    • Yuan, X.1
  • 10
    • 75149177340 scopus 로고    scopus 로고
    • Hepatocyte nuclear factor 4α coordinates a transcription factor network regulating hepatic fatty acid metabolism
    • Martinez-Jimenez, C. P., Kyrmizi, I., Cardot, P., Gonzalez, F. J. & Talianidis, I. Hepatocyte nuclear factor 4α coordinates a transcription factor network regulating hepatic fatty acid metabolism. Mol. Cell. Biol. 30, 565-577 (2010).
    • (2010) Mol. Cell. Biol. , vol.30 , pp. 565-577
    • Martinez-Jimenez, C.P.1    Kyrmizi, I.2    Cardot, P.3    Gonzalez, F.J.4    Talianidis, I.5
  • 11
    • 80455144479 scopus 로고    scopus 로고
    • Pioneer transcription factors: Establishing competence for gene expression
    • Zaret, K. S. & Carroll, J. S. Pioneer transcription factors: establishing competence for gene expression. Genes Dev. 25, 2227-2241 (2011).
    • (2011) Genes Dev. , vol.25 , pp. 2227-2241
    • Zaret, K.S.1    Carroll, J.S.2
  • 12
    • 0035185021 scopus 로고    scopus 로고
    • The forkhead transcription factor Foxo1 (Fkhr) confers insulin sensitivity onto glucose-6-phosphatase expression
    • Nakae, J., Kitamura, T. Silver, D. L. & Accili, D. The forkhead transcription factor Foxo1 (Fkhr) confers insulin sensitivity onto glucose-6-phosphatase expression. J. Clin. Invest. 108, 1359-1367 (2001).
    • (2001) J. Clin. Invest. , vol.108 , pp. 1359-1367
    • Nakae, J.1    Kitamura Silver T, D.L.2    Accili, D.3
  • 13
    • 79951962147 scopus 로고    scopus 로고
    • CREB and the CRTC co-activators: Sensors for hormonal and metabolic signals
    • Altarejos, J. Y. & Montminy, M. CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat. Rev. Mol. Cell Biol. 12, 141-151 (2011).
    • (2011) Nat. Rev. Mol. Cell Biol. , vol.12 , pp. 141-151
    • Altarejos, J.Y.1    Montminy, M.2
  • 14
    • 84891642691 scopus 로고    scopus 로고
    • CREB and FoxO1: Two transcription factors for the regulation of hepatic gluconeogenesis
    • Oh, K.-J., Han, H.-S., Kim, M.-J. & Koo, S.-H. CREB and FoxO1: two transcription factors for the regulation of hepatic gluconeogenesis. BMB Rep. 46, 567-574 (2013).
    • (2013) BMB Rep. , vol.46 , pp. 567-574
    • Oh, K.-J.1    Han, H.-S.2    Kim, M.-J.3    Koo, S.-H.4
  • 15
    • 53649097239 scopus 로고    scopus 로고
    • Pancreatic transcription factors and their role in the birth, life and survival of the pancreatic β cell
    • Bernardo, A. S., Hay, C. W. & Docherty, K. Pancreatic transcription factors and their role in the birth, life and survival of the pancreatic β cell. Mol. Cell. Endocrinol. 294, 1-9 (2008).
    • (2008) Mol. Cell. Endocrinol. , vol.294 , pp. 1-9
    • Bernardo, A.S.1    Hay, C.W.2    Docherty, K.3
  • 16
    • 33745576798 scopus 로고    scopus 로고
    • Role of hypothalamic Foxo1 in the regulation of food intake and energy homeostasis
    • Kim, M.-S. et al. Role of hypothalamic Foxo1 in the regulation of food intake and energy homeostasis. Nat. Neurosci. 9, 901-906 (2006).
    • (2006) Nat. Neurosci. , vol.9 , pp. 901-906
    • Kim, M.-S.1
  • 17
    • 33646590947 scopus 로고    scopus 로고
    • Forkhead protein FoxO1 mediates Agrp-dependent effects of leptin on food intake
    • Kitamura, T. et al. Forkhead protein FoxO1 mediates Agrp-dependent effects of leptin on food intake. Nat. Med. 12, 534-540 (2006).
    • (2006) Nat. Med. , vol.12 , pp. 534-540
    • Kitamura, T.1
  • 18
    • 0038747134 scopus 로고    scopus 로고
    • Role of signal transducer and activator of transcription 3 in regulation of hypothalamic proopiomelanocortin gene expression by leptin
    • Münzberg, H., Huo, L., Nillni, E. A., Hollenberg, A. N. & Bjørbæk, C. Role of signal transducer and activator of transcription 3 in regulation of hypothalamic proopiomelanocortin gene expression by leptin. Endocrinology 144, 2121-2131 (2003).
    • (2003) Endocrinology , vol.144 , pp. 2121-2131
    • Münzberg, H.1    Huo, L.2    Nillni, E.A.3    Hollenberg, A.N.4    Bjørbæk, C.5
  • 19
    • 1842584949 scopus 로고    scopus 로고
    • Disruption of neural signal transducer and activator of transcription 3 causes obesity, diabetes, infertility, and thermal dysregulation
    • Gao, Q. et al. Disruption of neural signal transducer and activator of transcription 3 causes obesity, diabetes, infertility, and thermal dysregulation. Proc. Natl Acad. Sci. USA 101, 4661-4666 (2004).
    • (2004) Proc. Natl Acad. Sci. USA , vol.101 , pp. 4661-4666
    • Gao, Q.1
  • 20
    • 46349110307 scopus 로고    scopus 로고
    • Signal transducer and activator of transcription-3 is required in hypothalamic agouti-related protein/neuropeptide y neurons for normal energy homeostasis
    • Gong, L. et al. Signal transducer and activator of transcription-3 is required in hypothalamic agouti-related protein/neuropeptide Y neurons for normal energy homeostasis. Endocrinology 149, 3346-3354 (2008).
    • (2008) Endocrinology , vol.149 , pp. 3346-3354
    • Gong, L.1
  • 21
    • 33845867730 scopus 로고    scopus 로고
    • Inactivation of signal transducer and activator of transcription 3 in proopiomelanocortin (Pomc) neurons causes decreased Pomc expression, mild obesity, and defects in compensatory refeeding
    • Xu, A. W., Ste-Marie, L., Kaelin, C. B. & Barsh, G. S. Inactivation of signal transducer and activator of transcription 3 in proopiomelanocortin (Pomc) neurons causes decreased Pomc expression, mild obesity, and defects in compensatory refeeding. Endocrinology 148, 72-80 (2007).
    • (2007) Endocrinology , vol.148 , pp. 72-80
    • Xu, A.W.1    Ste-Marie, L.2    Kaelin, C.B.3    Barsh, G.S.4
  • 22
    • 45749150715 scopus 로고    scopus 로고
    • Loss of cytokine-STAT5 signaling in the CNS and pituitary gland alters energy balance and leads to obesity
    • Lee, J.-Y. et al. Loss of cytokine-STAT5 signaling in the CNS and pituitary gland alters energy balance and leads to obesity. PLoS ONE 3, e1639 (2008).
    • (2008) PLoS ONE , vol.3 , pp. e1639
    • Lee, J.-Y.1
  • 23
    • 0033575871 scopus 로고    scopus 로고
    • Stimulation of lipolysis but not of leptin release by growth hormone is abolished in adipose tissue from Stat5a and b knockout mice
    • Fain, J. N., Ihle, J. H. & Bahouth, S. W. Stimulation of lipolysis but not of leptin release by growth hormone is abolished in adipose tissue from Stat5a and b knockout mice. Biochem. Biophys. Res. Commun. 263, 201-205 (1999).
    • (1999) Biochem. Biophys. Res. Commun. , vol.263 , pp. 201-205
    • Fain, J.N.1    Ihle, J.H.2    Bahouth, S.W.3
  • 24
    • 84893712870 scopus 로고    scopus 로고
    • The role of JAK-STAT signaling in adipose tissue function
    • Richard, A. J. & Stephens, J. M. The role of JAK-STAT signaling in adipose tissue function. Biochim. Biophys. Acta 1842, 431-439 (2014).
    • (2014) Biochim. Biophys. Acta , vol.1842 , pp. 431-439
    • Richard, A.J.1    Stephens, J.M.2
  • 25
    • 84865196738 scopus 로고    scopus 로고
    • Glucose sensing by ChREBP/MondoA-Mlx transcription factors
    • Havula, E. & Hietakangas, V. Glucose sensing by ChREBP/MondoA-Mlx transcription factors. Semin. Cell Dev. Biol. 23, 640-647 (2012).
    • (2012) Semin. Cell Dev. Biol. , vol.23 , pp. 640-647
    • Havula, E.1    Hietakangas, V.2
  • 27
    • 77955483125 scopus 로고    scopus 로고
    • Activation of a metabolic gene regulatory network downstream of mTOR complex 1
    • Düvel, K. et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol. Cell 39, 171-183 (2010).
    • (2010) Mol. Cell , vol.39 , pp. 171-183
    • Düvel, K.1
  • 28
    • 84930363624 scopus 로고    scopus 로고
    • MTOR signaling in cellular and organismal energetics
    • Albert, V. & Hall, M. N. mTOR signaling in cellular and organismal energetics. Curr. Opin. Cell Biol. 33, 55-66 (2015).
    • (2015) Curr. Opin. Cell Biol. , vol.33 , pp. 55-66
    • Albert, V.1    Hall, M.N.2
  • 29
    • 77957933413 scopus 로고    scopus 로고
    • Molecular mechanisms and genome-wide aspects of PPAR subtype specific transactivation
    • Bugge, A. & Mandrup, S. Molecular mechanisms and genome-wide aspects of PPAR subtype specific transactivation. PPAR Res. 2010, 169506 (2010).
    • (2010) PPAR Res. , vol.2010 , pp. 169506
    • Bugge, A.1    Mandrup, S.2
  • 30
    • 0032589689 scopus 로고    scopus 로고
    • Activation PPARγ coactivator-1 through transcription factor dock
    • Puigserver, P. et al. Activation PPARγ coactivator-1 through transcription factor dock. Science 286, 1368-1371 (1999).
    • (1999) Science , vol.286 , pp. 1368-1371
    • Puigserver, P.1
  • 31
    • 14544282413 scopus 로고    scopus 로고
    • Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1
    • Rodgers, J. T. et al. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature 434, 113-118 (2005).
    • (2005) Nature , vol.434 , pp. 113-118
    • Rodgers, J.T.1
  • 32
    • 14844328611 scopus 로고    scopus 로고
    • Tissue-specific regulation of metabolic pathways through the transcriptional coactivator PGC1-α
    • Puigserver, P. Tissue-specific regulation of metabolic pathways through the transcriptional coactivator PGC1-α. Int. J. Obes. (Lond.) 29, S5-S9 (2005).
    • (2005) Int. J. Obes. (Lond.) , vol.29 , pp. S5-S9
    • Puigserver, P.1
  • 33
    • 81055144760 scopus 로고    scopus 로고
    • Adipocyte NCoR knockout decreases PPARγ phosphorylation and enhances PPARγ activity and insulin sensitivity
    • Li, P. et al. Adipocyte NCoR knockout decreases PPARγ phosphorylation and enhances PPARγ activity and insulin sensitivity. Cell 147, 815-826 (2011).
    • (2011) Cell , vol.147 , pp. 815-826
    • Li, P.1
  • 34
    • 84872171191 scopus 로고    scopus 로고
    • RIP140, a Janus metabolic switch involved in defense functions
    • Chung, H. T. RIP140, a Janus metabolic switch involved in defense functions. Cell. Mol. Immunol. 10, 7-9 (2013).
    • (2013) Cell. Mol. Immunol. , vol.10 , pp. 7-9
    • Chung, H.T.1
  • 35
    • 2442696086 scopus 로고    scopus 로고
    • Transcription coactivator PBP, the peroxisome proliferator-activated receptor (PPAR)-binding protein, is required for PPARα-regulated gene expression in liver
    • Jia, Y. et al. Transcription coactivator PBP, the peroxisome proliferator-activated receptor (PPAR)-binding protein, is required for PPARα-regulated gene expression in liver. J. Biol. Chem. 279, 24427-24434 (2004).
    • (2004) J. Biol. Chem. , vol.279 , pp. 24427-24434
    • Jia, Y.1
  • 36
    • 77953377843 scopus 로고    scopus 로고
    • A muscle-specific knockout implicates nuclear receptor coactivator MED1 in the regulation of glucose and energy metabolism
    • Chen, W., Zhang, X., Birsoy, K. & Roeder, R. G. A muscle-specific knockout implicates nuclear receptor coactivator MED1 in the regulation of glucose and energy metabolism. Proc. Natl Acad. Sci. USA 107, 10196-10201 (2010).
    • (2010) Proc. Natl Acad. Sci. USA , vol.107 , pp. 10196-10201
    • Chen, W.1    Zhang, X.2    Birsoy, K.3    Roeder, R.G.4
  • 37
    • 0030768745 scopus 로고    scopus 로고
    • Steroid receptor coactivator-1 is a histone acetyltransferase
    • Spencer, T. E. et al. Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 389, 194-198 (1997).
    • (1997) Nature , vol.389 , pp. 194-198
    • Spencer, T.E.1
  • 38
    • 0030740253 scopus 로고    scopus 로고
    • Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300
    • Chen, H. et al. Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell 90, 569-580 (1997).
    • (1997) Cell , vol.90 , pp. 569-580
    • Chen, H.1
  • 39
    • 84894674781 scopus 로고    scopus 로고
    • Nuclear receptor coactivators: Master regulators of human health and disease
    • Dasgupta, S., Lonard, D. M. & O'Malley, B. W. Nuclear receptor coactivators: master regulators of human health and disease. Annu. Rev. Med. 65, 279-292 (2014).
    • (2014) Annu. Rev. Med. , vol.65 , pp. 279-292
    • Dasgupta, S.1    Lonard, D.M.2    O'Malley, B.W.3
  • 40
    • 0035839136 scopus 로고    scopus 로고
    • Translating the histone code
    • Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074-1080 (2001).
    • (2001) Science , vol.293 , pp. 1074-1080
    • Jenuwein, T.1    Allis, C.D.2
  • 41
    • 0007852927 scopus 로고
    • The presence of acetyl groups of histones
    • Phillips, D. M. The presence of acetyl groups of histones. Biochem. J. 87, 258-263 (1963).
    • (1963) Biochem. J. , vol.87 , pp. 258-263
    • Phillips, D.M.1
  • 42
    • 0013857650 scopus 로고
    • Structural modifications of histones and their possible role in the regulation of ribonucleic acid synthesis
    • Allfrey, V. G. Structural modifications of histones and their possible role in the regulation of ribonucleic acid synthesis. Proc. Can. Cancer Conf. 6, 313-335 (1966).
    • (1966) Proc. Can. Cancer Conf. , vol.6 , pp. 313-335
    • Allfrey, V.G.1
  • 43
    • 33745557847 scopus 로고    scopus 로고
    • Nucleocytosolic acetyl-coenzyme a synthetase is required for histone acetylation and global transcription
    • Takahashi, H., McCaffery, J. M., Irizarry, R. A. & Boeke, J. D. Nucleocytosolic acetyl-coenzyme a synthetase is required for histone acetylation and global transcription. Mol. Cell 23, 207-217 (2006).
    • (2006) Mol. Cell , vol.23 , pp. 207-217
    • Takahashi, H.1    McCaffery, J.M.2    Irizarry, R.A.3    Boeke, J.D.4
  • 44
    • 66249105703 scopus 로고    scopus 로고
    • ATP-citrate lyase links cellular metabolism to histone acetylation
    • Wellen, K. E. et al. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324, 1076-1080 (2009).
    • (2009) Science , vol.324 , pp. 1076-1080
    • Wellen, K.E.1
  • 45
    • 84903954689 scopus 로고    scopus 로고
    • A nuclear pyruvate dehydrogenase complex is important for the generation of acetyl-CoA and histone acetylation
    • Sutendra, G. et al. A nuclear pyruvate dehydrogenase complex is important for the generation of acetyl-CoA and histone acetylation. Cell 158, 84-97 (2014).
    • (2014) Cell , vol.158 , pp. 84-97
    • Sutendra, G.1
  • 46
    • 78751611793 scopus 로고    scopus 로고
    • Distinct roles of GCN5/PCAF-mediated H3K9ac CBP/p300-mediated H3K18/27ac nuclear receptor transactivation
    • Jin, Q. et al. Distinct roles of GCN5/PCAF-mediated H3K9ac CBP/p300-mediated H3K18/27ac nuclear receptor transactivation. EMBO J. 30, 249-262 (2011).
    • (2011) EMBO J. , vol.30 , pp. 249-262
    • Jin, Q.1
  • 47
    • 0034437608 scopus 로고    scopus 로고
    • Sir2: An NAD-dependent histone deacetylase that connects chromatin silencing, metabolism, and aging
    • Imai, S. et al. Sir2: an NAD-dependent histone deacetylase that connects chromatin silencing, metabolism, and aging. Cold Spring Harb. Symp. Quant. Biol. 65, 297-302 (2000).
    • (2000) Cold Spring Harb. Symp. Quant. Biol. , vol.65 , pp. 297-302
    • Imai, S.1
  • 48
    • 84455188711 scopus 로고    scopus 로고
    • +, a circadian metabolite with an epigenetic twist
    • +, a circadian metabolite with an epigenetic twist. Endocrinology 153, 1-5 (2012).
    • (2012) Endocrinology , vol.153 , pp. 1-5
    • Sassone-Corsi, P.1
  • 50
    • 43049169926 scopus 로고    scopus 로고
    • Epigenetic control of rDNA loci in response to intracellular energy status
    • Murayama, A. et al. Epigenetic control of rDNA loci in response to intracellular energy status. Cell 133, 627-639 (2008).
    • (2008) Cell , vol.133 , pp. 627-639
    • Murayama, A.1
  • 51
    • 31044445366 scopus 로고    scopus 로고
    • Genomic instability and aging-like phenotype in the absence of mammalian SIRT6
    • Mostoslavsky, R. et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124, 315-329 (2006).
    • (2006) Cell , vol.124 , pp. 315-329
    • Mostoslavsky, R.1
  • 52
    • 74549142287 scopus 로고    scopus 로고
    • The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1a
    • Zhong, L. et al. The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1a. Cell 140, 280-293 (2010).
    • (2010) Cell , vol.140 , pp. 280-293
    • Zhong, L.1
  • 53
    • 84886686038 scopus 로고    scopus 로고
    • Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins
    • Feldman, J. L, Baeza, J. & Denu, J. M. Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins. J. Biol. Chem. 288, 31350-31356 (2013).
    • (2013) J. Biol. Chem. , vol.288 , pp. 31350-31356
    • Feldman, J.L.1    Baeza, J.2    Denu, J.M.3
  • 54
    • 84872166360 scopus 로고    scopus 로고
    • Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor
    • Shimazu, T. et al. Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 339, 211-214 (2013).
    • (2013) Science , vol.339 , pp. 211-214
    • Shimazu, T.1
  • 55
    • 84870389262 scopus 로고    scopus 로고
    • The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation
    • Donohoe, D. R. et al. The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol. Cell 48, 612-626 (2012).
    • (2012) Mol. Cell , vol.48 , pp. 612-626
    • Donohoe, D.R.1
  • 56
    • 84872160110 scopus 로고    scopus 로고
    • Influence of threonine metabolism on S-adenosylmethionine and histone methylation
    • Shyh-Chang, N. et al. Influence of threonine metabolism on S-adenosylmethionine and histone methylation. Science 339, 222-226 (2013).
    • (2013) Science , vol.339 , pp. 222-226
    • Shyh-Chang, N.1
  • 57
    • 84887069903 scopus 로고    scopus 로고
    • Nutritional control of epigenetic processes in yeast and human cells
    • Sadhu, M. J. et al. Nutritional control of epigenetic processes in yeast and human cells. Genetics 195, 831-844 (2013).
    • (2013) Genetics , vol.195 , pp. 831-844
    • Sadhu, M.J.1
  • 58
    • 11144332565 scopus 로고    scopus 로고
    • Histone demethylation mediated by the nuclear amine oxidase homolog LSD1
    • Shi, Y. et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119, 941-953 (2004).
    • (2004) Cell , vol.119 , pp. 941-953
    • Shi, Y.1
  • 59
    • 32844454603 scopus 로고    scopus 로고
    • Histone demethylation by a family of JmjC domain-containing proteins
    • Tsukada, Y.-I. et al. Histone demethylation by a family of JmjC domain-containing proteins. Nature 439, 811-816 (2006).
    • (2006) Nature , vol.439 , pp. 811-816
    • Tsukada, Y.-I.1
  • 60
    • 16344368814 scopus 로고    scopus 로고
    • Histone demethylation catalysed by LSD1 is a flavin-dependent oxidative process
    • Forneris, F., Binda, C, Vanoni, M. A., Mattevi, A. & Battaglioli, E. Histone demethylation catalysed by LSD1 is a flavin-dependent oxidative process. FEBS Lett. 579, 2203-2207 (2005).
    • (2005) FEBS Lett. , vol.579 , pp. 2203-2207
    • Forneris, F.1    Binda, C.2    Vanoni, M.A.3    Mattevi, A.4    Battaglioli, E.5
  • 61
    • 84859176881 scopus 로고    scopus 로고
    • FAD-dependent lysine-specific demethylase-1 regulates cellular energy expenditure
    • Hino, S. et al. FAD-dependent lysine-specific demethylase-1 regulates cellular energy expenditure. Nat. Commun. 3, 758 (2012).
    • (2012) Nat. Commun. , vol.3 , pp. 758
    • Hino, S.1
  • 62
    • 70450239624 scopus 로고    scopus 로고
    • Inhibition of succinate dehydrogenase dysregulates histone modification in mammalian cells
    • Cervera, A. M., Bayley, J.-P., Devilee, P. & McCreath, K. J. Inhibition of succinate dehydrogenase dysregulates histone modification in mammalian cells. Mol. Cancer 8, 89 (2009).
    • (2009) Mol. Cancer , vol.8 , pp. 89
    • Cervera, A.M.1    Bayley, J.-P.2    Devilee, P.3    McCreath, K.J.4
  • 63
    • 84862632865 scopus 로고    scopus 로고
    • Inhibition of a-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors
    • Xiao, M. et al. Inhibition of a-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev. 26, 1326-1338 (2012).
    • (2012) Genes Dev. , vol.26 , pp. 1326-1338
    • Xiao, M.1
  • 64
    • 78650447665 scopus 로고    scopus 로고
    • β-N-acetylglucosamine (O-GlcNAc) is part of the histone code
    • Sakabe, K., Wang, Z. & Hart, G. W. β-N-acetylglucosamine (O-GlcNAc) is part of the histone code. Proc. Natl Acad. Sci. USA 107, 19915-19920 (2010).
    • (2010) Proc. Natl Acad. Sci. USA , vol.107 , pp. 19915-19920
    • Sakabe, K.1    Wang, Z.2    Hart, G.W.3
  • 65
    • 80054818714 scopus 로고    scopus 로고
    • F Modification of histones by sugar β-N-acetylglucosamine (GlcNAc) occurs on multiple residues, including histone H3 serine 10, and is cell cycle-regulated
    • Zhang, S., Roche, K., Nasheuer, H.-P & Lowndes, N. F Modification of histones by sugar β-N-acetylglucosamine (GlcNAc) occurs on multiple residues, including histone H3 serine 10, and is cell cycle-regulated. J. Biol. Chem. 286, 37483-37495 (2011).
    • (2011) J. Biol. Chem. , vol.286 , pp. 37483-37495
    • Zhang, S.1    Roche, K.2    Nasheuer, H.-P.3    Lowndes, N.4
  • 66
    • 84901313642 scopus 로고    scopus 로고
    • AMPK regulates histone H2B O-GlcNAcylation
    • Xu, Q. et al. AMPK regulates histone H2B O-GlcNAcylation. Nucleic Acids Res. 42, 5594-5604 (2014).
    • (2014) Nucleic Acids Res. , vol.42 , pp. 5594-5604
    • Xu, Q.1
  • 67
    • 84860184939 scopus 로고    scopus 로고
    • Bittersweet memories: Linking metabolism to epigenetics through O-GlcNAcylation
    • Hanover, J. A., Krause, M. W & Love, D. C. Bittersweet memories: linking metabolism to epigenetics through O-GlcNAcylation. Nat. Rev. Mol. Cell Biol. 13, 312-321 (2012).
    • (2012) Nat. Rev. Mol. Cell Biol. , vol.13 , pp. 312-321
    • Hanover, J.A.1    Krause, M.W.2    Love, D.C.3
  • 68
    • 77956294919 scopus 로고    scopus 로고
    • Signaling kinase AMPK activates stress-promoted transcription via histone H2B phosphorylation
    • Bungard, D. et al. Signaling kinase AMPK activates stress-promoted transcription via histone H2B phosphorylation. Science 329, 1201-1205 (2010).
    • (2010) Science , vol.329 , pp. 1201-1205
    • Bungard, D.1
  • 69
    • 84867183192 scopus 로고    scopus 로고
    • Histone phosphorylation: A chromatin modification involved in diverse nuclear events
    • Rossetto, D., Avvakumov, N. & Côté, J. Histone phosphorylation: a chromatin modification involved in diverse nuclear events. Epigenetics 7, 1098-1108 (2012).
    • (2012) Epigenetics , vol.7 , pp. 1098-1108
    • Rossetto, D.1    Avvakumov, N.2    Côté, J.3
  • 70
    • 0018796405 scopus 로고
    • Nuclear protein modification and chromatin substructure. 3. Relationship between poly(adenosine diphosphate) ribosylation and different functional forms of chromatin
    • Jump, D. B., Butt, T. R. & Smulson, M. Nuclear protein modification and chromatin substructure. 3. Relationship between poly(adenosine diphosphate) ribosylation and different functional forms of chromatin. Biochemistry 18, 983-990 (1979).
    • (1979) Biochemistry , vol.18 , pp. 983-990
    • Jump, D.B.1    Butt, T.R.2    Smulson, M.3
  • 71
    • 79953752384 scopus 로고    scopus 로고
    • PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation
    • Bai, P. et al. PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab. 13, 461-468 (2011).
    • (2011) Cell Metab. , vol.13 , pp. 461-468
    • Bai, P.1
  • 72
    • 84861775176 scopus 로고    scopus 로고
    • ARTD1 deletion causes increased hepatic lipid accumulation in mice fed a high-fat diet and impairs adipocyte function and differentiation
    • Erener, S. et al. ARTD1 deletion causes increased hepatic lipid accumulation in mice fed a high-fat diet and impairs adipocyte function and differentiation. FASEB J. 26, 2631-2638 (2012).
    • (2012) FASEB J. , vol.26 , pp. 2631-2638
    • Erener, S.1
  • 73
    • 84855242257 scopus 로고    scopus 로고
    • Poly (ADP-ribose)polymerase-1 (PARP1) controls adipogenic gene expression and adipocyte function
    • Erener, S. et al. Poly (ADP-ribose)polymerase-1 (PARP1) controls adipogenic gene expression and adipocyte function. Mol. Endocrinol. 26, 79-86 (2012).
    • (2012) Mol. Endocrinol. , vol.26 , pp. 79-86
    • Erener, S.1
  • 74
    • 84861163510 scopus 로고    scopus 로고
    • Lysine succinylation and lysine malonylation in histones
    • Xie, Z. et al. Lysine succinylation and lysine malonylation in histones. Mol. Cell Proteomics 11, 100-107 (2012).
    • (2012) Mol. Cell Proteomics , vol.11 , pp. 100-107
    • Xie, Z.1
  • 75
    • 34248640428 scopus 로고    scopus 로고
    • Lysine propionylation and butyrylation are novel post-translational modifications in histones
    • Chen, Y. et al. Lysine propionylation and butyrylation are novel post-translational modifications in histones. Mol. Cell Proteomics 6, 812-819 (2007).
    • (2007) Mol. Cell Proteomics , vol.6 , pp. 812-819
    • Chen, Y.1
  • 76
    • 84881478663 scopus 로고    scopus 로고
    • Histone H3 glutathionylation in proliferating mammalian cells destabilizes nucleosomal structure
    • García-Giménez, J. L. et al. Histone H3 glutathionylation in proliferating mammalian cells destabilizes nucleosomal structure. Antioxid. Redox Signal. 19, 1305-1320 (2013).
    • (2013) Antioxid. Redox Signal. , vol.19 , pp. 1305-1320
    • García-Giménez, J.L.1
  • 77
    • 84876685129 scopus 로고    scopus 로고
    • Macro domains as metabolite sensors on chromatin
    • Posavec, M., Timinszky, G. & Buschbeck, M. Macro domains as metabolite sensors on chromatin. Cell. Mol. Life Sci. 70, 1509-1524 (2013).
    • (2013) Cell. Mol. Life Sci. , vol.70 , pp. 1509-1524
    • Posavec, M.1    Timinszky, G.2    Buschbeck, M.3
  • 78
    • 77953378893 scopus 로고    scopus 로고
    • Histone variant macroH2A1 deletion in mice causes female-specific steatosis
    • Boulard, M. et al. Histone variant macroH2A1 deletion in mice causes female-specific steatosis. Epigenetics Chromatin 3, 8 (2010).
    • (2010) Epigenetics Chromatin , vol.3 , pp. 8
    • Boulard, M.1
  • 79
    • 34147136796 scopus 로고    scopus 로고
    • Developmental changes in histone macroH2A1-mediated gene regulation
    • Changolkar, L. N. et al. Developmental changes in histone macroH2A1-mediated gene regulation. Mol. Cell. Biol. 27, 2758-2764 (2007).
    • (2007) Mol. Cell. Biol. , vol.27 , pp. 2758-2764
    • Changolkar, L.N.1
  • 81
    • 84864311315 scopus 로고    scopus 로고
    • Hydroxylation of 5-methylcytosine by TET2 maintains the active state of the mammalian HOXA cluster
    • Bocker, M. T. et al. Hydroxylation of 5-methylcytosine by TET2 maintains the active state of the mammalian HOXA cluster. Nat. Commun. 3, 818 (2012).
    • (2012) Nat. Commun. , vol.3 , pp. 818
    • Bocker, M.T.1
  • 82
    • 66149146320 scopus 로고    scopus 로고
    • Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1
    • Tahiliani, M. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930-935 (2009).
    • (2009) Science , vol.324 , pp. 930-935
    • Tahiliani, M.1
  • 83
    • 84870319843 scopus 로고    scopus 로고
    • Impact of an exercise intervention on DNA methylation in skeletal muscle from first-degree relatives of patients with type 2 diabetes
    • Nitert, M. D. et al. Impact of an exercise intervention on DNA methylation in skeletal muscle from first-degree relatives of patients with type 2 diabetes. Diabetes 61, 3322-3332 (2012).
    • (2012) Diabetes , vol.61 , pp. 3322-3332
    • Nitert, M.D.1
  • 84
    • 84876979205 scopus 로고    scopus 로고
    • Weight loss after gastric bypass surgery in human obesity remodels promoter methylation
    • Barres, R. et al. Weight loss after gastric bypass surgery in human obesity remodels promoter methylation. Cell Rep. 3, 1020-1027 (2013).
    • (2013) Cell Rep. , vol.3 , pp. 1020-1027
    • Barres, R.1
  • 85
    • 79957576579 scopus 로고    scopus 로고
    • Control of nuclear receptor activities in metabolism by post-translational modifications
    • Berrabah, W., Aumercier, P., Lefebvre, P. & Staels, B. Control of nuclear receptor activities in metabolism by post-translational modifications. FEBS Lett. 585, 1640-1650 (2011).
    • (2011) FEBS Lett. , vol.585 , pp. 1640-1650
    • Berrabah, W.1    Aumercier, P.2    Lefebvre, P.3    Staels, B.4
  • 86
    • 0033546439 scopus 로고    scopus 로고
    • Phosphorylation of the transcription factor forkhead family member FKHR by protein kinase B
    • Rena, G., Guo, S., Cichy, S. C., Unterman, T. G. & Cohen, P. Phosphorylation of the transcription factor forkhead family member FKHR by protein kinase B. J. Biol. Chem. 274, 17179-17183 (1999).
    • (1999) J. Biol. Chem. , vol.274 , pp. 17179-17183
    • Rena, G.1    Guo, S.2    Cichy, S.C.3    Unterman, T.G.4    Cohen, P.5
  • 87
    • 53949087832 scopus 로고    scopus 로고
    • Arginine methylation of FOXO transcription factors inhibits their phosphorylation by Akt
    • Yamagata, K. et al. Arginine methylation of FOXO transcription factors inhibits their phosphorylation by Akt. Mol. Cell 32, 221-231 (2008).
    • (2008) Mol. Cell , vol.32 , pp. 221-231
    • Yamagata, K.1
  • 88
    • 47749149232 scopus 로고    scopus 로고
    • O-GlcNAc regulates FoxO activation in response to glucose
    • Housley, M. P. et al. O-GlcNAc regulates FoxO activation in response to glucose. J. Biol. Chem. 283, 16283-16292 (2008).
    • (2008) J. Biol. Chem. , vol.283 , pp. 16283-16292
    • Housley, M.P.1
  • 89
    • 84904561365 scopus 로고    scopus 로고
    • Starvation-induced transgenerational inheritance of small RNAs in C. Elegans
    • Rechavi, O. et al. Starvation-induced transgenerational inheritance of small RNAs in C. elegans. Cell 158, 277-287 (2014).
    • (2014) Cell , vol.158 , pp. 277-287
    • Rechavi, O.1
  • 90
    • 84899632427 scopus 로고    scopus 로고
    • Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice
    • Gapp, K. et al. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat. Neurosci. 17, 667-669 (2014).
    • (2014) Nat. Neurosci. , vol.17 , pp. 667-669
    • Gapp, K.1
  • 91
    • 84906088773 scopus 로고    scopus 로고
    • In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism
    • Radford, E. J. et al. In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism. Science 345, 1255903 (2014).
    • (2014) Science , vol.345 , pp. 1255903
    • Radford, E.J.1
  • 92
    • 84884862385 scopus 로고    scopus 로고
    • Mutation in folate metabolism causes epigenetic instability and transgenerational effects on development
    • Padmanabhan, N. et al. Mutation in folate metabolism causes epigenetic instability and transgenerational effects on development. Cell 155, 81-93 (2013).
    • (2013) Cell , vol.155 , pp. 81-93
    • Padmanabhan, N.1
  • 93
    • 78650446334 scopus 로고    scopus 로고
    • Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals
    • Carone, B. R. et al. Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 143, 1084-1096 (2010).
    • (2010) Cell , vol.143 , pp. 1084-1096
    • Carone, B.R.1
  • 94
    • 84920918662 scopus 로고    scopus 로고
    • Paternal diet defines offspring chromatin state and intergenerational obesity
    • Öst, A. et al. Paternal diet defines offspring chromatin state and intergenerational obesity. Cell 159, 1352-1364 (2014).
    • (2014) Cell , vol.159 , pp. 1352-1364
    • Öst, A.1
  • 95
    • 84878011578 scopus 로고    scopus 로고
    • Exploring the three-dimensional organization of genomes: Interpreting chromatin interaction data
    • Dekker, J., Marti-Renom, M. A. & Mirny, L. A. Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat. Rev. Genet. 14, 390-403 (2013).
    • (2013) Nat. Rev. Genet. , vol.14 , pp. 390-403
    • Dekker, J.1    Marti-Renom, M.A.2    Mirny, L.A.3
  • 96
    • 84865605602 scopus 로고    scopus 로고
    • Chromatin structure, epigenetic mechanisms and long-range interactions in the human insulin locus
    • Xu, Z., Lefevre, G. M. & Felsenfeld, G. Chromatin structure, epigenetic mechanisms and long-range interactions in the human insulin locus. Diabetes Obes. Metab. 14, S1-S11 (2012).
    • (2012) Diabetes Obes. Metab. , vol.14 , pp. S1-S11
    • Xu, Z.1    Lefevre, G.M.2    Felsenfeld, G.3
  • 97
    • 84872522528 scopus 로고    scopus 로고
    • Latent enhancers activated by stimulation in differentiated cells
    • Ostuni, R. et al. Latent enhancers activated by stimulation in differentiated cells. Cell 152, 157-171 (2013).
    • (2013) Cell , vol.152 , pp. 157-171
    • Ostuni, R.1
  • 98
    • 84926205298 scopus 로고    scopus 로고
    • RNA-mediated epigenetic regulation of gene expression
    • Holoch, D. & Moazed, D. RNA-mediated epigenetic regulation of gene expression. Nat. Rev. Genet. 16, 71-84 (2015).
    • (2015) Nat. Rev. Genet. , vol.16 , pp. 71-84
    • Holoch, D.1    Moazed, D.2
  • 99
    • 84938310296 scopus 로고    scopus 로고
    • A strand-specific switch in noncoding transcription switches the function of a Polycomb/Trithorax response element
    • Herzog, V. A. et al. A strand-specific switch in noncoding transcription switches the function of a Polycomb/Trithorax response element. Nat. Genet. 46, 973-981 (2014).
    • (2014) Nat. Genet. , vol.46 , pp. 973-981
    • Herzog, V.A.1
  • 100
    • 84904643968 scopus 로고    scopus 로고
    • The emerging role of microRNAs and nutrition in modulating health and disease
    • Ross, S. A. & Davis, C. D. The emerging role of microRNAs and nutrition in modulating health and disease. Annu. Rev. Nutr. 34, 305-336 (2014).
    • (2014) Annu. Rev. Nutr. , vol.34 , pp. 305-336
    • Ross, S.A.1    Davis, C.D.2
  • 101
    • 84875256553 scopus 로고    scopus 로고
    • A major epigenetic programming mechanism guided by piRNAs
    • Huang, X. A. et al. A major epigenetic programming mechanism guided by piRNAs. Dev. Cell 24, 502-516 (2013).
    • (2013) Dev. Cell , vol.24 , pp. 502-516
    • Huang, X.A.1
  • 102
    • 84874230944 scopus 로고    scopus 로고
    • Piwi induces piRNA-guided transcriptional silencing and establishment of a repressive chromatin state
    • Le Thomas, A. et al. Piwi induces piRNA-guided transcriptional silencing and establishment of a repressive chromatin state. Genes Dev. 27, 390-399 (2013).
    • (2013) Genes Dev. , vol.27 , pp. 390-399
    • Le Thomas, A.1
  • 103
    • 33947273235 scopus 로고    scopus 로고
    • Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila
    • Brennecke, J. et al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128, 1089-1103 (2007).
    • (2007) Cell , vol.128 , pp. 1089-1103
    • Brennecke, J.1
  • 104
    • 79952525007 scopus 로고    scopus 로고
    • MITOPLD is a mitochondrial protein essential for nuage formation and piRNA biogenesis in the mouse germline
    • Watanabe, T et al. MITOPLD is a mitochondrial protein essential for nuage formation and piRNA biogenesis in the mouse germline. Dev. Cell 20, 364-375 (2011).
    • (2011) Dev. Cell , vol.20 , pp. 364-375
    • Watanabe, T.1
  • 105
    • 84904604049 scopus 로고    scopus 로고
    • AGO3 Slicer activity regulates mitochondria-nuage localization of Armitage and piRNA amplification
    • Huang, H. et al. AGO3 Slicer activity regulates mitochondria-nuage localization of Armitage and piRNA amplification. J. Cell Biol. 206, 217-230 (2014).
    • (2014) J. Cell Biol. , vol.206 , pp. 217-230
    • Huang, H.1
  • 106
    • 84866977211 scopus 로고    scopus 로고
    • Research resource: RNA-Seq reveals unique features of the pancreatic p-cell transcriptome
    • Ku, G. M. et al. Research resource: RNA-Seq reveals unique features of the pancreatic p-cell transcriptome. Mol. Endocrinol. 26, 1783-1792 (2012).
    • (2012) Mol. Endocrinol. , vol.26 , pp. 1783-1792
    • Ku, G.M.1
  • 107
    • 84867070330 scopus 로고    scopus 로고
    • Human p cell transcriptome analysis uncovers lncRNAs that are tissue-specific, dynamically regulated, and abnormally expressed in type 2 diabetes
    • Morán, I. et al. Human p cell transcriptome analysis uncovers lncRNAs that are tissue-specific, dynamically regulated, and abnormally expressed in type 2 diabetes. Cell Metab. 16, 435-448 (2012).
    • (2012) Cell Metab. , vol.16 , pp. 435-448
    • Morán, I.1
  • 108
    • 84874500772 scopus 로고    scopus 로고
    • Long noncoding RNAs regulate adipogenesis
    • Sun, L. et al. Long noncoding RNAs regulate adipogenesis. Proc. Natl Acad. Sci. USA 110, 3387-3392 (2013).
    • (2013) Proc. Natl Acad. Sci. USA , vol.110 , pp. 3387-3392
    • Sun, L.1
  • 109
    • 78649955414 scopus 로고    scopus 로고
    • Multiple roles for the non-coding RNA SRA in regulation of adipogenesis and insulin sensitivity
    • Xu, B. et al. Multiple roles for the non-coding RNA SRA in regulation of adipogenesis and insulin sensitivity. PLoS ONE 5, e14199 (2010).
    • (2010) PLoS ONE , vol.5 , pp. e14199
    • Xu, B.1
  • 110
    • 45849137877 scopus 로고    scopus 로고
    • Regulation of hepatic lipogenesis by the transcription factor XBP1
    • Lee, A. H., Scapa, E. F., Cohen, D. E. & Glimcher, L. H. Regulation of hepatic lipogenesis by the transcription factor XBP1. Science 320, 1492-1496 (2008).
    • (2008) Science , vol.320 , pp. 1492-1496
    • Lee, A.H.1    Scapa, E.F.2    Cohen, D.E.3    Glimcher, L.H.4
  • 111
    • 84908158825 scopus 로고    scopus 로고
    • Hepatic IRE1 a regulates fasting-induced metabolic adaptive programs through the XBP1s-PPARa axis signalling
    • Shao, M. et al. Hepatic IRE1 a regulates fasting-induced metabolic adaptive programs through the XBP1s-PPARa axis signalling. Nat. Commun. 5, 3528 (2014).
    • (2014) Nat. Commun. , vol.5 , pp. 3528
    • Shao, M.1
  • 112
    • 84863393597 scopus 로고    scopus 로고
    • Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis
    • He, C. et al. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature 481, 511-515 (2012).
    • (2012) Nature , vol.481 , pp. 511-515
    • He, C.1
  • 113
    • 84929502727 scopus 로고    scopus 로고
    • How to control self-digestion: Transcriptional, post-transcriptional, and post-translational regulation of autophagy
    • Feng, Y, Yao, Z. & Klionsky, D. J. How to control self-digestion: transcriptional, post-transcriptional, and post-translational regulation of autophagy. Trends Cell Biol. 25, 354-363 (2015).
    • (2015) Trends Cell Biol. , vol.25 , pp. 354-363
    • Feng, Y.1    Yao, Z.2    Klionsky, D.J.3
  • 114
    • 84865790047 scopus 로고    scopus 로고
    • An integrated encyclopedia of DNA elements in the human genome
    • The ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57-74 (2012).
    • (2012) Nature , vol.489 , pp. 57-74
  • 115
    • 10744227070 scopus 로고    scopus 로고
    • Control of pancreas and liver gene expression by HNF transcription factors
    • Odom, D. T et al. Control of pancreas and liver gene expression by HNF transcription factors. Science 303, 1378-1381 (2004).
    • (2004) Science , vol.303 , pp. 1378-1381
    • Odom, D.T.1
  • 116
    • 84877329207 scopus 로고    scopus 로고
    • PPARy signaling and metabolism: The good, the bad and the future
    • Ahmadian, M. et al. PPARy signaling and metabolism: the good, the bad and the future. Nat. Med. 19, 557-566 (2013).
    • (2013) Nat. Med. , vol.19 , pp. 557-566
    • Ahmadian, M.1
  • 118
    • 84901937811 scopus 로고    scopus 로고
    • Liver X receptors in lipid metabolism: Opportunities for drug discovery
    • Hong, C. & Tontonoz, P. Liver X receptors in lipid metabolism: opportunities for drug discovery. Nat. Rev. Drug Discov. 13, 433-444 (2014).
    • (2014) Nat. Rev. Drug Discov. , vol.13 , pp. 433-444
    • Hong, C.1    Tontonoz, P.2
  • 119
    • 0037010478 scopus 로고    scopus 로고
    • Role of peroxisome proliferator-activated receptor y and retinoid X receptor heterodimer in hepatogastroenterological diseases
    • Dubuquoy, L. et al. Role of peroxisome proliferator-activated receptor y and retinoid X receptor heterodimer in hepatogastroenterological diseases. Lancet 360, 1410-1418 (2002).
    • (2002) Lancet , vol.360 , pp. 1410-1418
    • Dubuquoy, L.1
  • 120
    • 30044452661 scopus 로고    scopus 로고
    • Foxa2, a novel transcriptional regulator of insulin sensitivity
    • Puigserver, P. & Rodgers, J. T. Foxa2, a novel transcriptional regulator of insulin sensitivity. Nat. Med. 12, 38-39 (2006).
    • (2006) Nat. Med. , vol.12 , pp. 38-39
    • Puigserver, P.1    Rodgers, J.T.2
  • 122
    • 19444385692 scopus 로고    scopus 로고
    • Stat3 regulates genes common to both wound healing and cancer
    • Dauer, D. J. et al. Stat3 regulates genes common to both wound healing and cancer Oncogene 24, 3397-3408 (2005).
    • (2005) Oncogene , vol.24 , pp. 3397-3408
    • Dauer, D.J.1
  • 123
    • 84865693929 scopus 로고    scopus 로고
    • Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways
    • Scott, R. A. et al. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat. Genet. 44, 991-1005 (2012).
    • (2012) Nat. Genet. , vol.44 , pp. 991-1005
    • Scott, R.A.1
  • 124
    • 84923171580 scopus 로고    scopus 로고
    • Genetic studies of body mass index yield new insights for obesity biology
    • Locke, A. E. et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 518, 197-206 (2015).
    • (2015) Nature , vol.518 , pp. 197-206
    • Locke, A.E.1
  • 125
    • 33644830498 scopus 로고    scopus 로고
    • Glucose tolerance at age 58 and the decline of glucose tolerance in comparison with age 50 in people prenatally exposed to the Dutch famine
    • de Rooij, S. R. et al. Glucose tolerance at age 58 and the decline of glucose tolerance in comparison with age 50 in people prenatally exposed to the Dutch famine. Diabetologia 49, 637-643 (2006).
    • (2006) Diabetologia , vol.49 , pp. 637-643
    • De Rooij, S.R.1
  • 126
    • 0017305263 scopus 로고
    • Obesity in young men after famine exposure in utero and early infancy
    • Ravelli, G. P., Stein, Z. A. & Susser, M. W. Obesity in young men after famine exposure in utero and early infancy. N. Engl. J. Med. 295, 349-353 (1976).
    • (1976) N. Engl. J. Med. , vol.295 , pp. 349-353
    • Ravelli, G.P.1    Stein, Z.A.2    Susser, M.W.3
  • 127
    • 0033652166 scopus 로고    scopus 로고
    • Coronary heart disease after prenatal exposure to the Dutch famine, 1944-45
    • Roseboom, T. J. et al. Coronary heart disease after prenatal exposure to the Dutch famine, 1944-45. Heart 84, 595-598 (2000).
    • (2000) Heart , vol.84 , pp. 595-598
    • Roseboom, T.J.1
  • 128
    • 84925857675 scopus 로고    scopus 로고
    • I'm eating for two: Parental dietary effects on offspring metabolism
    • Rando, O. J. & Simmons, R. A. I'm eating for two: parental dietary effects on offspring metabolism. Cell 161, 93-105 (2015).
    • (2015) Cell , vol.161 , pp. 93-105
    • Rando, O.J.1    Simmons, R.A.2
  • 129
    • 84897139220 scopus 로고    scopus 로고
    • Transgenerational epigenetic inheritance: Myths and mechanisms
    • Heard, E. & Martienssen, R. A. Transgenerational epigenetic inheritance: myths and mechanisms. Cell 157, 95-109 (2014).
    • (2014) Cell , vol.157 , pp. 95-109
    • Heard, E.1    Martienssen, R.A.2
  • 130
    • 79958244237 scopus 로고    scopus 로고
    • Transcriptional control of metabolic and inflammatory pathways by nuclear receptor SUMOylation
    • Treuter, E. & Venteclef, N. Transcriptional control of metabolic and inflammatory pathways by nuclear receptor SUMOylation. Biochim. Biophys. Acta 1812, 909-918 (2011).
    • (2011) Biochim. Biophys. Acta , vol.1812 , pp. 909-918
    • Treuter, E.1    Venteclef, N.2
  • 131
    • 84856487109 scopus 로고    scopus 로고
    • The story so far: Post-translational regulation of peroxisome proliferator-activated receptors by ubiquitination and SUMOylation
    • Wadosky, K. M. & Willis, M. S. The story so far: post-translational regulation of peroxisome proliferator-activated receptors by ubiquitination and SUMOylation. Am. J. Physiol. Heart Circ. Physiol. 302, H515-H526 (2012).
    • (2012) Am. J. Physiol. Heart Circ. Physiol. , vol.302 , pp. H515-H526
    • Wadosky, K.M.1    Willis, M.S.2
  • 132
    • 84904116358 scopus 로고    scopus 로고
    • Identification of posttranslational modifications in peroxisome proliferator-activated receptor γ using mass spectrometry
    • Katsura, S., Okumura, T., Ito, R., Sugawara, A. & Yokoyama, A. Identification of posttranslational modifications in peroxisome proliferator-activated receptor γ using mass spectrometry. PPAR Res. 2014, 468925 (2014).
    • (2014) PPAR Res. , vol.2014 , pp. 468925
    • Katsura, S.1    Okumura, T.2    Ito, R.3    Sugawara, A.4    Yokoyama, A.5
  • 133
    • 84864615516 scopus 로고    scopus 로고
    • Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Pparγ
    • Qiang, L. et al. Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Pparγ. Cell 150, 620-632 (2012).
    • (2012) Cell , vol.150 , pp. 620-632
    • Qiang, L.1
  • 134
    • 84862777029 scopus 로고    scopus 로고
    • O-GlcNAc modification of PPARγ reduces its transcriptional activity
    • Ji, S., Park, S. Y., Roth, J., Kim, H. S. & Cho, J. W. O-GlcNAc modification of PPARγ reduces its transcriptional activity. Biochem. Biophys. Res. Commun. 417, 1158-1163 (2012).
    • (2012) Biochem. Biophys. Res. Commun. , vol.417 , pp. 1158-1163
    • Ji, S.1    Park, S.Y.2    Roth, J.3    Kim, H.S.4    Cho, J.W.5
  • 135
    • 0030695445 scopus 로고    scopus 로고
    • The maturity-onset diabetes of the young (MODY1) transcription factor HNF4α regulates expression of genes required for glucose transport and metabolism
    • Stoffel, M. & Duncan, S. A. The maturity-onset diabetes of the young (MODY1) transcription factor HNF4α regulates expression of genes required for glucose transport and metabolism. Proc. Natl Acad. Sci. USA 94, 13209-13214 (1997).
    • (1997) Proc. Natl Acad. Sci. USA , vol.94 , pp. 13209-13214
    • Stoffel, M.1    Duncan, S.A.2
  • 136
    • 79960338300 scopus 로고    scopus 로고
    • Multiple post-translational modifications in hepatocyte nuclear factor 4α
    • Yokoyama, A. et al. Multiple post-translational modifications in hepatocyte nuclear factor 4α. Biochem. Biophys. Res. Commun. 410, 749-753 (2011).
    • (2011) Biochem. Biophys. Res. Commun. , vol.410 , pp. 749-753
    • Yokoyama, A.1
  • 137
    • 84920162021 scopus 로고    scopus 로고
    • O-GlcNAcylation links ChREBP and FXR to glucose-sensing
    • Benhamed, F. et al. O-GlcNAcylation links ChREBP and FXR to glucose-sensing. Front. Endocrinol. (Lausanne) 5, 230 (2014).
    • (2014) Front. Endocrinol. (Lausanne) , vol.5 , pp. 230
    • Benhamed, F.1
  • 138
    • 79957944105 scopus 로고    scopus 로고
    • Estrogen related receptors (ERRs): A new dawn in transcriptional control of mitochondrial gene networks
    • Eichner, L. J. & Giguère, V. Estrogen related receptors (ERRs): a new dawn in transcriptional control of mitochondrial gene networks. Mitochondrion 11, 544-552 (2011).
    • (2011) Mitochondrion , vol.11 , pp. 544-552
    • Eichner, L.J.1    Giguère, V.2
  • 139
    • 0037507270 scopus 로고    scopus 로고
    • Acetylation of cAMP-responsive element-binding protein (CREB) by CREB-binding protein enhances CREB-dependent transcription
    • Lu, Q., Hutchins, A. E., Doyle, C. M., Lundblad, J. R. & Kwok, R. P. Acetylation of cAMP-responsive element-binding protein (CREB) by CREB-binding protein enhances CREB-dependent transcription. J. Biol. Chem. 278, 15727-15734 (2003).
    • (2003) J. Biol. Chem. , vol.278 , pp. 15727-15734
    • Lu, Q.1    Hutchins, A.E.2    Doyle, C.M.3    Lundblad, J.R.4    Kwok, R.P.5
  • 140
    • 0037533891 scopus 로고    scopus 로고
    • Dynamic glycosylation of the transcription factor CREB: A potential role in gene regulation
    • Lamarre-Vincent, N. & Hsieh-Wilson, L. C. Dynamic glycosylation of the transcription factor CREB: a potential role in gene regulation. J. Am. Chem. Soc. 125, 6612-6613 (2003).
    • (2003) J. Am. Chem. Soc. , vol.125 , pp. 6612-6613
    • Lamarre-Vincent, N.1    Hsieh-Wilson, L.C.2
  • 141
    • 84872899284 scopus 로고    scopus 로고
    • FOXOs: Signalling integrators for homeostasis maintenance
    • Eijkelenboom, A. & Burgering, B. M. T. FOXOs: signalling integrators for homeostasis maintenance. Nat. Rev. Mol. Cell Biol. 14, 83-97 (2013).
    • (2013) Nat. Rev. Mol. Cell Biol. , vol.14 , pp. 83-97
    • Eijkelenboom, A.1    Burgering, B.M.T.2
  • 142
    • 33750438123 scopus 로고    scopus 로고
    • The Foxa family of transcription factors in development and metabolism
    • Friedman, J. R. & Kaestner, K. H. The Foxa family of transcription factors in development and metabolism. Cell. Mol. Life Sci. 63, 2317-2328 (2006).
    • (2006) Cell. Mol. Life Sci. , vol.63 , pp. 2317-2328
    • Friedman, J.R.1    Kaestner, K.H.2
  • 143
    • 73649108251 scopus 로고    scopus 로고
    • Stable chromatin binding prevents FoxA acetylation, preserving FoxA chromatin remodeling
    • Kohler, S. & Cirillo, L. A. Stable chromatin binding prevents FoxA acetylation, preserving FoxA chromatin remodeling. J. Biol. Chem. 285, 464-472 (2010).
    • (2010) J. Biol. Chem. , vol.285 , pp. 464-472
    • Kohler, S.1    Cirillo, L.A.2
  • 144
    • 84907664573 scopus 로고    scopus 로고
    • Nuclear mobility and activity of FOXA1 with androgen receptor are regulated by SUMOylation
    • Sutinen, P., Rahkama, V., Rytinki, M. & Palvimo, J. J. Nuclear mobility and activity of FOXA1 with androgen receptor are regulated by SUMOylation. Mol. Endocrinol. 28, 1719-1728 (2014).
    • (2014) Mol. Endocrinol. , vol.28 , pp. 1719-1728
    • Sutinen, P.1    Rahkama, V.2    Rytinki, M.3    Palvimo, J.J.4
  • 145
    • 84868295291 scopus 로고    scopus 로고
    • Forkhead box protein A2 (FOXA2) protein stability and activity are regulated by sumoylation
    • Belaguli, N. S., Zhang, M., Brunicardi, F. C. & Berger, D. H. Forkhead box protein A2 (FOXA2) protein stability and activity are regulated by sumoylation. PLoS ONE 7, e48019 (2012).
    • (2012) PLoS ONE , vol.7 , pp. e48019
    • Belaguli, N.S.1    Zhang, M.2    Brunicardi, F.C.3    Berger, D.H.4
  • 147
    • 84896490633 scopus 로고    scopus 로고
    • Toward a new STATe: The role of STATs in mitochondrial function
    • Meier, J. A. & Larner, A. C. Toward a new STATe: the role of STATs in mitochondrial function. Semin. Immunol. 26, 20-28 (2014).
    • (2014) Semin. Immunol. , vol.26 , pp. 20-28
    • Meier, J.A.1    Larner, A.C.2
  • 148
    • 84859992161 scopus 로고    scopus 로고
    • The JAK-STAT pathway at twenty
    • Stark, G. R. & Darnell, J. E. The JAK-STAT pathway at twenty. Immunity 36, 503-514 (2012).
    • (2012) Immunity , vol.36 , pp. 503-514
    • Stark, G.R.1    Darnell, J.E.2
  • 149
    • 84887568463 scopus 로고    scopus 로고
    • Transcriptional control of hepatic lipid metabolism by SREBP and ChREBP
    • Xu, X., So, J.-S., Park, J.-G. & Lee, A.-H. Transcriptional control of hepatic lipid metabolism by SREBP and ChREBP. Semin. Liver Dis. 33, 301-311 (2013).
    • (2013) Semin. Liver Dis. , vol.33 , pp. 301-311
    • Xu, X.1    So, J.-S.2    Park, J.-G.3    Lee, A.-H.4
  • 150
    • 84867099976 scopus 로고    scopus 로고
    • Expanding roles for SREBP in metabolism
    • Shao, W. & Espenshade, P. J. Expanding roles for SREBP in metabolism. Cell Metab. 16, 414-419 (2012).
    • (2012) Cell Metab. , vol.16 , pp. 414-419
    • Shao, W.1    Espenshade, P.J.2
  • 152
    • 0037930875 scopus 로고    scopus 로고
    • Sterol regulatory element-binding proteins are negatively regulated through SUMO-1 modification independent of the ubiquitin/26 S proteasome pathway
    • Hirano, Y., Murata, S., Tanaka, K., Shimizu, M. & Sato, R. Sterol regulatory element-binding proteins are negatively regulated through SUMO-1 modification independent of the ubiquitin/26 S proteasome pathway. J. Biol. Chem. 278, 16809-16819 (2003).
    • (2003) J. Biol. Chem. , vol.278 , pp. 16809-16819
    • Hirano, Y.1    Murata, S.2    Tanaka, K.3    Shimizu, M.4    Sato, R.5
  • 153
    • 84886812954 scopus 로고    scopus 로고
    • The nexus of chromatin regulation and intermediary metabolism
    • Gut, P. & Verdin, E. The nexus of chromatin regulation and intermediary metabolism. Nature 502, 489-498 (2013).
    • (2013) Nature , vol.502 , pp. 489-498
    • Gut, P.1    Verdin, E.2
  • 154
    • 84863534997 scopus 로고    scopus 로고
    • Metabolic regulation of epigenetics
    • Lu, C. & Thompson, C. B. Metabolic regulation of epigenetics. Cell Metab. 16, 9-17 (2012).
    • (2012) Cell Metab. , vol.16 , pp. 9-17
    • Lu, C.1    Thompson, C.B.2
  • 155
    • 84907327882 scopus 로고    scopus 로고
    • Metabolism leaves its mark on the powerhouse: Recent progress in post-translational modifications of lysine in mitochondria
    • Papanicolaou, K. N., O'Rourke, B. & Foster, D. B. Metabolism leaves its mark on the powerhouse: recent progress in post-translational modifications of lysine in mitochondria. Front. Physiol. 5, 301 (2014).
    • (2014) Front. Physiol. , vol.5 , pp. 301
    • Papanicolaou, K.N.1    O'Rourke, B.2    Foster, D.B.3
  • 156
    • 84873513937 scopus 로고    scopus 로고
    • A histone mutant reproduces the phenotype caused by loss of histone-modifying factor Polycomb
    • Pengelly, A. R., Copur, O., Jackle, H., Herzig, A. & Muller, J. A histone mutant reproduces the phenotype caused by loss of histone-modifying factor Polycomb. Science 339, 698-699 (2013).
    • (2013) Science , vol.339 , pp. 698-699
    • Pengelly, A.R.1    Copur, O.2    Jackle, H.3    Herzig, A.4    Muller, J.5
  • 157
    • 84874031676 scopus 로고    scopus 로고
    • Regulation of transcription through acetylation of H3K122 on the lateral surface of the histone octamer
    • Tropberger, P. et al.Regulation of transcription through acetylation of H3K122 on the lateral surface of the histone octamer. Cell 152, 859-872 (2013).
    • (2013) Cell , vol.152 , pp. 859-872
    • Tropberger, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.