메뉴 건너뛰기




Volumn 120, Issue , 2016, Pages 236-248

Sparsity-based correction of exponential artifacts

Author keywords

Artifact removal; Signal decomposition; Sparsity

Indexed keywords

ALGORITHMS; CONVEX OPTIMIZATION; ELECTROENCEPHALOGRAPHY; ELECTROPHYSIOLOGY; OPTIMIZATION; SIGNAL PROCESSING;

EID: 84944252309     PISSN: 01651684     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.sigpro.2015.09.017     Document Type: Article
Times cited : (23)

References (69)
  • 1
    • 80054735370 scopus 로고    scopus 로고
    • Employing spatially constrained ICA and wavelet denoising, for automatic removal of artifacts from multichannel EEG data
    • M.T. Akhtar, W. Mitsuhashi, and C.J. James Employing spatially constrained ICA and wavelet denoising, for automatic removal of artifacts from multichannel EEG data Signal Process. 92 2 2012 401 416
    • (2012) Signal Process. , vol.92 , Issue.2 , pp. 401-416
    • Akhtar, M.T.1    Mitsuhashi, W.2    James, C.J.3
  • 3
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • A. Beck, and M. Teboulle A fast iterative shrinkage-thresholding algorithm for linear inverse problems SIAM J. Imag. Sci. 2 1 2009 183 202
    • (2009) SIAM J. Imag. Sci. , vol.2 , Issue.1 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 4
    • 57349174008 scopus 로고    scopus 로고
    • Enhancing sparsity by reweighted l1 minimization
    • E.J. Candès, M.B. Wakin, and S. Boyd Enhancing sparsity by reweighted l1 minimization J. Fourier Anal. Appl. 14 December (5) 2008 877 905
    • (2008) J. Fourier Anal. Appl. , vol.14 , Issue.DECEMBER 5 , pp. 877-905
    • Candès, E.J.1    Wakin, M.B.2    Boyd, S.3
  • 5
    • 0035307274 scopus 로고    scopus 로고
    • Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization
    • M. Cetin, and W.C. Karl Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization IEEE Trans. Image Process. 10 April (4) 2001 623 631
    • (2001) IEEE Trans. Image Process. , vol.10 , Issue.APRIL 4 , pp. 623-631
    • Cetin, M.1    Karl, W.C.2
  • 6
    • 0032022704 scopus 로고    scopus 로고
    • Nonlinear wavelet image processing: Variational problems, compression, and noise removal through wavelet shrinkage
    • A. Chambolle, R.A. de Vore, N.-Y. Lee, and B.J. Lucier Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage IEEE Trans. Image Process. 7 March (3) 1998 319 335
    • (1998) IEEE Trans. Image Process. , vol.7 , Issue.MARCH 3 , pp. 319-335
    • Chambolle, A.1    De Vore, R.A.2    Lee, N.-Y.3    Lucier, B.J.4
  • 9
    • 84880438923 scopus 로고    scopus 로고
    • Inter-trial analysis of post-movement beta activities in EEG signals using multivariate empirical mode decomposition
    • H.-C. Chang, P.-L. Lee, M.-T. Lo, Y.-T. Wu, K.-W. Wang, and G.-Y. Lan Inter-trial analysis of post-movement beta activities in EEG signals using multivariate empirical mode decomposition IEEE Trans. Neural Syst. Rehabil. Eng. 21 July (4) 2013 607 615
    • (2013) IEEE Trans. Neural Syst. Rehabil. Eng. , vol.21 , Issue.JULY 4 , pp. 607-615
    • Chang, H.-C.1    Lee, P.-L.2    Lo, M.-T.3    Wu, Y.-T.4    Wang, K.-W.5    Lan, G.-Y.6
  • 10
    • 84903287278 scopus 로고    scopus 로고
    • Group-sparse signal denoising: Non-convex regularization, convex optimization
    • P.-Y. Chen, and I.W. Selesnick Group-sparse signal denoising: non-convex regularization, convex optimization IEEE Trans. Signal Process. 62 July (13) 2014 3464 3478
    • (2014) IEEE Trans. Signal Process. , vol.62 , Issue.JULY 13 , pp. 3464-3478
    • Chen, P.-Y.1    Selesnick, I.W.2
  • 12
    • 53549102752 scopus 로고    scopus 로고
    • Integration of amplitude and phase statistics for complete artifact removal in independent components of neuromagnetic recordings
    • J. Dammers, M. Schiek, F. Boers, C. Silex, M. Zvyagintsev, U. Pietrzyk, and K. Mathiak Integration of amplitude and phase statistics for complete artifact removal in independent components of neuromagnetic recordings IEEE Trans. Biomed. Eng. 55 October (10) 2008 2353 2362
    • (2008) IEEE Trans. Biomed. Eng. , vol.55 , Issue.OCTOBER 10 , pp. 2353-2362
    • Dammers, J.1    Schiek, M.2    Boers, F.3    Silex, C.4    Zvyagintsev, M.5    Pietrzyk, U.6    Mathiak, K.7
  • 14
    • 0141975226 scopus 로고    scopus 로고
    • Reconstruction of wavelet coefficients using total variation minimization
    • S. Durand, and J. Froment Reconstruction of wavelet coefficients using total variation minimization SIAM J. Sci. Comput. 24 5 2003 1754 1767
    • (2003) SIAM J. Sci. Comput. , vol.24 , Issue.5 , pp. 1754-1767
    • Durand, S.1    Froment, J.2
  • 15
    • 36749072615 scopus 로고    scopus 로고
    • Majorization-minimization algorithms for wavelet-based image restoration
    • M. Figueiredo, J. Bioucas-Dias, and R. Nowak Majorization-minimization algorithms for wavelet-based image restoration IEEE Trans. Image Process. 16 December (12) 2007 2980 2991
    • (2007) IEEE Trans. Image Process. , vol.16 , Issue.DECEMBER 12 , pp. 2980-2991
    • Figueiredo, M.1    Bioucas-Dias, J.2    Nowak, R.3
  • 16
    • 80051473062 scopus 로고    scopus 로고
    • Multivariate empirical mode decomposition and application to multichannel filtering
    • J. Fleureau, A. Kachenoura, L. Albera, J.-C. Nunes, and L. Senhadji Multivariate empirical mode decomposition and application to multichannel filtering Signal Process. 91 12 2011 2783 2792
    • (2011) Signal Process. , vol.91 , Issue.12 , pp. 2783-2792
    • Fleureau, J.1    Kachenoura, A.2    Albera, L.3    Nunes, J.-C.4    Senhadji, L.5
  • 17
    • 2942640138 scopus 로고    scopus 로고
    • On sparse representations in arbitrary redundant bases
    • J.-J. Fuchs On sparse representations in arbitrary redundant bases IEEE Trans. Inf. Theory 50 6 2004 1341 1344
    • (2004) IEEE Trans. Inf. Theory , vol.50 , Issue.6 , pp. 1341-1344
    • Fuchs, J.-J.1
  • 18
    • 0032282297 scopus 로고    scopus 로고
    • Wavelet shrinkage denoising using the non-negative garrote
    • H. Gao Wavelet shrinkage denoising using the non-negative garrote J. Comput. Graph. Stat. 7 4 1998 469 488
    • (1998) J. Comput. Graph. Stat. , vol.7 , Issue.4 , pp. 469-488
    • Gao, H.1
  • 19
    • 84874934387 scopus 로고    scopus 로고
    • A balanced combination of Tikhonov and total variation regularizations for reconstruction of piecewise-smooth signals
    • A. Gholami, and S.M. Hosseini A balanced combination of Tikhonov and total variation regularizations for reconstruction of piecewise-smooth signals Signal Process. 93 7 2013 1945 1960
    • (2013) Signal Process. , vol.93 , Issue.7 , pp. 1945-1960
    • Gholami, A.1    Hosseini, S.M.2
  • 20
    • 84860864849 scopus 로고    scopus 로고
    • Automatic removal of ocular artifacts using adaptive filtering and independent component analysis for electroencephalogram data
    • C. Guerrero-Mosquera, and A. Navia-Vázquez Automatic removal of ocular artifacts using adaptive filtering and independent component analysis for electroencephalogram data IET Signal Process. 6 2 2012 99 106
    • (2012) IET Signal Process. , vol.6 , Issue.2 , pp. 99-106
    • Guerrero-Mosquera, C.1    Navia-Vázquez, A.2
  • 21
    • 32644438199 scopus 로고    scopus 로고
    • Speech pitch determination based on Hilbert-Huang transform
    • H. Huang, and J. Pan Speech pitch determination based on Hilbert-Huang transform Signal Process. 86 April (4) 2006 792 803
    • (2006) Signal Process. , vol.86 , Issue.APRIL 4 , pp. 792-803
    • Huang, H.1    Pan, J.2
  • 22
    • 5444236478 scopus 로고    scopus 로고
    • The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis
    • (March)
    • N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N.C. Yen, C.C. Tung, H.H. Liu, The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. R. Soc. Lond. A, 454 (March) (1998) 903-995.
    • (1998) Proc. R. Soc. Lond. A , vol.454 , pp. 903-995
    • Huang, N.E.1    Shen, Z.2    Long, S.R.3    Wu, M.C.4    Shih, H.H.5    Zheng, Q.6    Yen, N.C.7    Tung, C.C.8    Liu, H.H.9
  • 24
    • 1342332031 scopus 로고    scopus 로고
    • A tutorial on MM algorithms
    • D.R. Hunter, and K. Lange A tutorial on MM algorithms Am. Stat. 58 2004 30 37
    • (2004) Am. Stat. , vol.58 , pp. 30-37
    • Hunter, D.R.1    Lange, K.2
  • 25
    • 84894378144 scopus 로고    scopus 로고
    • Artifact characterization and removal for in vivo neural recording
    • M.K. Islam, A. Rastegarnia, A.T. Nguyen, and Z. Yang Artifact characterization and removal for in vivo neural recording J. Neurosci. Methods 226 0 2014 110 123
    • (2014) J. Neurosci. Methods , vol.226 , pp. 110-123
    • Islam, M.K.1    Rastegarnia, A.2    Nguyen, A.T.3    Yang, Z.4
  • 26
    • 1942472547 scopus 로고    scopus 로고
    • Automatic removal of eye movement and blink artifacts from EEG data using blind component separation
    • C.A. Joyce, I.F. Gorodnitsky, and M. Kutas Automatic removal of eye movement and blink artifacts from EEG data using blind component separation Psychophysiology 41 2 2004 313 325
    • (2004) Psychophysiology , vol.41 , Issue.2 , pp. 313-325
    • Joyce, C.A.1    Gorodnitsky, I.F.2    Kutas, M.3
  • 27
    • 80054082634 scopus 로고    scopus 로고
    • A signal processing approach to generalized 1-d total variation
    • F.I. Karahanoglu, I. Bayram, and D. Van De Ville A signal processing approach to generalized 1-d total variation IEEE Trans. Signal Process. 59 November (11) 2011 5265 5274
    • (2011) IEEE Trans. Signal Process. , vol.59 , Issue.NOVEMBER 11 , pp. 5265-5274
    • Karahanoglu, F.I.1    Bayram, I.2    Van De Ville, D.3
  • 28
    • 38949158757 scopus 로고    scopus 로고
    • Explicit formula for the inverse of a tridiagonal matrix by backward continued fractions
    • E. Kilic Explicit formula for the inverse of a tridiagonal matrix by backward continued fractions Appl. Math. Comput. 197 1 2008 345 357
    • (2008) Appl. Math. Comput. , vol.197 , Issue.1 , pp. 345-357
    • Kilic, E.1
  • 29
    • 84865432700 scopus 로고    scopus 로고
    • The inverse of banded matrices
    • E. Kilic, and P. Stanica The inverse of banded matrices J. Comput. Appl. Math. 237 1 2013 126 135
    • (2013) J. Comput. Appl. Math. , vol.237 , Issue.1 , pp. 126-135
    • Kilic, E.1    Stanica, P.2
  • 32
    • 63449122839 scopus 로고    scopus 로고
    • Development of EMD-based denoising methods inspired by wavelet thresholding
    • Y. Kopsinis, and S. McLaughlin Development of EMD-based denoising methods inspired by wavelet thresholding IEEE Trans. Signal Process. 57 April (4) 2009 1351 1362
    • (2009) IEEE Trans. Signal Process. , vol.57 , Issue.APRIL 4 , pp. 1351-1362
    • Kopsinis, Y.1    McLaughlin, S.2
  • 33
    • 70049113231 scopus 로고    scopus 로고
    • Sparse regression using mixed norms
    • M. Kowalski Sparse regression using mixed norms Appl. Comput. Harmonic Anal. 27 3 2009 303 324
    • (2009) Appl. Comput. Harmonic Anal. , vol.27 , Issue.3 , pp. 303-324
    • Kowalski, M.1
  • 34
    • 79957439473 scopus 로고    scopus 로고
    • Sparse solutions of underdetermined linear systems
    • W. Freeden, Springer
    • I. Kozlov, and A. Petukhov Sparse solutions of underdetermined linear systems W. Freeden, Handbook of Geomathematics 2010 Springer
    • (2010) Handbook of Geomathematics
    • Kozlov, I.1    Petukhov, A.2
  • 36
    • 77950023906 scopus 로고    scopus 로고
    • Optimization transfer using surrogate objective functions
    • K. Lange, D. Hunter, and I. Yang Optimization transfer using surrogate objective functions J. Comput. Graph. Stat. 9 2000 1 20
    • (2000) J. Comput. Graph. Stat. , vol.9 , pp. 1-20
    • Lange, K.1    Hunter, D.2    Yang, I.3
  • 37
    • 84856904725 scopus 로고    scopus 로고
    • Automatic artifact rejection from multichannel scalp EEG by wavelet ICA
    • N. Mammone, F. L a Foresta, and F.C. Morabito Automatic artifact rejection from multichannel scalp EEG by wavelet ICA IEEE J. Sens. 12 March (3) 2012 533 542
    • (2012) IEEE J. Sens. , vol.12 , Issue.MARCH 3 , pp. 533-542
    • Mammone, N.1    Foresta F, L.A.2    Morabito, F.C.3
  • 39
    • 85032750818 scopus 로고    scopus 로고
    • Empirical mode decomposition-based time-frequency analysis of multivariate signals: The power of adaptive data analysis
    • D.P. Mandic, N.U. Rehman, Z. Wu, and N.E. Huang Empirical mode decomposition-based time-frequency analysis of multivariate signals: the power of adaptive data analysis IEEE Signal Process. Mag. 30 November (6) 2013 74 86
    • (2013) IEEE Signal Process. Mag. , vol.30 , Issue.NOVEMBER 6 , pp. 74-86
    • Mandic, D.P.1    Rehman, N.U.2    Wu, Z.3    Huang, N.E.4
  • 40
    • 84856283861 scopus 로고    scopus 로고
    • Wavelet-based motion artifact removal for functional near-infrared spectroscopy
    • B. Molavi, and G.A. Dumont Wavelet-based motion artifact removal for functional near-infrared spectroscopy Physiol. Meas. 33 2 2012 259
    • (2012) Physiol. Meas. , vol.33 , Issue.2 , pp. 259
    • Molavi, B.1    Dumont, G.A.2
  • 41
    • 84865346016 scopus 로고    scopus 로고
    • Artifact suppression from EEG signals using data adaptive time domain filtering
    • M.K.I. Molla, M.R. Islam, T. Tanaka, and T.M. Rutkowski Artifact suppression from EEG signals using data adaptive time domain filtering Neurocomputing 97 2012 297 308
    • (2012) Neurocomputing , vol.97 , pp. 297-308
    • Molla, M.K.I.1    Islam, M.R.2    Tanaka, T.3    Rutkowski, T.M.4
  • 42
    • 84867593933 scopus 로고    scopus 로고
    • Multivariate EMD based approach to EOG artifacts separation from EEG
    • M.K.I. Molla, T. Tanaka, T.M. Rutkowski, Multivariate EMD based approach to EOG artifacts separation from EEG, in: 2012 Proceedings of ICASSP, 2012, pp. 653-656.
    • (2012) 2012 Proceedings of ICASSP , pp. 653-656
    • Molla, M.K.I.1    Tanaka, T.2    Rutkowski, T.M.3
  • 44
    • 50049106593 scopus 로고    scopus 로고
    • Removal of the eye-blink artifacts from EEGs via STF-TS modeling and robust minimum variance beamforming
    • K. Nazarpour, Y. Wongsawat, S. Sanei, J.A. Chambers, and S. Oraintara Removal of the eye-blink artifacts from EEGs via STF-TS modeling and robust minimum variance beamforming IEEE Trans. Biomed. Eng. 55 9 2008 2221 2231
    • (2008) IEEE Trans. Biomed. Eng. , vol.55 , Issue.9 , pp. 2221-2231
    • Nazarpour, K.1    Wongsawat, Y.2    Sanei, S.3    Chambers, J.A.4    Oraintara, S.5
  • 46
    • 33748416181 scopus 로고    scopus 로고
    • Analysis of the recovery of edges in images and signals by minimizing nonconvex regularized least-squares
    • M. Nikolova Analysis of the recovery of edges in images and signals by minimizing nonconvex regularized least-squares Multiscale Model. Simul. 4 3 2005 960 991
    • (2005) Multiscale Model. Simul. , vol.4 , Issue.3 , pp. 960-991
    • Nikolova, M.1
  • 47
    • 84881139498 scopus 로고    scopus 로고
    • ECG enhancement and QRS detection based on sparse derivatives
    • X. Ning, and I.W. Selesnick ECG enhancement and QRS detection based on sparse derivatives Biomed. Signal Process. Control 8 6 2013 713 723
    • (2013) Biomed. Signal Process. Control , vol.8 , Issue.6 , pp. 713-723
    • Ning, X.1    Selesnick, I.W.2
  • 48
    • 84864220328 scopus 로고    scopus 로고
    • Online removal of eye movement and blink EEG artifacts using a high-speed eye tracker
    • B. Noureddin, P.D. Lawrence, and G.E. Birch Online removal of eye movement and blink EEG artifacts using a high-speed eye tracker IEEE Trans. Biomed. Eng. 59 8 2012 2103 2110
    • (2012) IEEE Trans. Biomed. Eng. , vol.59 , Issue.8 , pp. 2103-2110
    • Noureddin, B.1    Lawrence, P.D.2    Birch, G.E.3
  • 49
    • 84875184099 scopus 로고    scopus 로고
    • A time-frequency based approach for generalized phase synchrony assessment in nonstationary multivariate signals
    • A. Omidvarnia, G. Azemi, P.B. Colditz, and B. Boashash A time-frequency based approach for generalized phase synchrony assessment in nonstationary multivariate signals Digit. Signal Process. 23 3 2013 780 790
    • (2013) Digit. Signal Process. , vol.23 , Issue.3 , pp. 780-790
    • Omidvarnia, A.1    Azemi, G.2    Colditz, P.B.3    Boashash, B.4
  • 50
    • 84923368417 scopus 로고    scopus 로고
    • EEG gamma band oscillations differentiate the planning of spatially directed movements of the arm versus eye: Multivariate empirical mode decomposition analysis
    • C. Park, M. Plank, J. Snider, S. Kim, H.C. Huang, S. Gepshtein, T.P. Coleman, and H. Poizner EEG gamma band oscillations differentiate the planning of spatially directed movements of the arm versus eye: multivariate empirical mode decomposition analysis IEEE Trans. Neural Syst. Rehabil. Eng. 22 September (5) 2014 1083 1096
    • (2014) IEEE Trans. Neural Syst. Rehabil. Eng. , vol.22 , Issue.SEPTEMBER 5 , pp. 1083-1096
    • Park, C.1    Plank, M.2    Snider, J.3    Kim, S.4    Huang, H.C.5    Gepshtein, S.6    Coleman, T.P.7    Poizner, H.8
  • 52
    • 77952080754 scopus 로고    scopus 로고
    • Multivariate empirical mode decomposition
    • N.U. Rehman, D.P. Mandic, Multivariate empirical mode decomposition, Proc. R. Soc. A, 466 (2117) (2010) 1291-1302.
    • (2010) Proc. R. Soc. A , vol.466 , Issue.2117 , pp. 1291-1302
    • Rehman, N.U.1    Mandic, D.P.2
  • 53
    • 79954532442 scopus 로고    scopus 로고
    • Filter bank property of multivariate empirical mode decomposition
    • N.U. Rehman, and D.P. Mandic Filter bank property of multivariate empirical mode decomposition IEEE Trans. Signal Process. 59 May (5) 2011 2421 2426
    • (2011) IEEE Trans. Signal Process. , vol.59 , Issue.MAY 5 , pp. 2421-2426
    • Rehman, N.U.1    Mandic, D.P.2
  • 54
    • 85008018510 scopus 로고    scopus 로고
    • One or two frequencies? the empirical mode decomposition answers
    • G. Rilling, and P. Flandrin One or two frequencies? The empirical mode decomposition answers IEEE Trans. Signal Process. 56 1 2008 85 95
    • (2008) IEEE Trans. Signal Process. , vol.56 , Issue.1 , pp. 85-95
    • Rilling, G.1    Flandrin, P.2
  • 57
    • 84993994068 scopus 로고    scopus 로고
    • Majorization-minimization algorithms for nonsmoothly penalized objective functions
    • E.D. Schifano, R.L. Strawderman, and M.T. Wells Majorization-minimization algorithms for nonsmoothly penalized objective functions Electron. J. Stat. 4 2010 1258 1299
    • (2010) Electron. J. Stat. , vol.4 , pp. 1258-1299
    • Schifano, E.D.1    Strawderman, R.L.2    Wells, M.T.3
  • 58
    • 84870535103 scopus 로고    scopus 로고
    • Polynomial smoothing of time series with additive step discontinuities
    • I.W. Selesnick, S. Arnold, and V. Dantham Polynomial smoothing of time series with additive step discontinuities IEEE Trans. Signal Process. 60 December (12) 2012 6305 6318
    • (2012) IEEE Trans. Signal Process. , vol.60 , Issue.DECEMBER 12 , pp. 6305-6318
    • Selesnick, I.W.1    Arnold, S.2    Dantham, V.3
  • 59
    • 84894593844 scopus 로고    scopus 로고
    • Sparse signal estimation by maximally sparse convex optimization
    • I.W. Selesnick, and I. Bayram Sparse signal estimation by maximally sparse convex optimization IEEE Trans. Signal Process. 62 March (5) 2014 1078 1092
    • (2014) IEEE Trans. Signal Process. , vol.62 , Issue.MARCH 5 , pp. 1078-1092
    • Selesnick, I.W.1    Bayram, I.2
  • 60
    • 84913558061 scopus 로고    scopus 로고
    • Transient artifact reduction algorithm (TARA) based on sparse optimization
    • I.W. Selesnick, H.L. Graber, Y. Ding, T. Zhang, and R.L. Barbour Transient artifact reduction algorithm (TARA) based on sparse optimization IEEE Trans. Signal Process. 62 December (24) 2014 6596 6611
    • (2014) IEEE Trans. Signal Process. , vol.62 , Issue.DECEMBER 24 , pp. 6596-6611
    • Selesnick, I.W.1    Graber, H.L.2    Ding, Y.3    Zhang, T.4    Barbour, R.L.5
  • 62
    • 80052280842 scopus 로고    scopus 로고
    • Method for eliminating mode mixing of empirical mode decomposition based on the revised blind source separation
    • B. Tang, S. Dong, and T. Song Method for eliminating mode mixing of empirical mode decomposition based on the revised blind source separation Signal Process. 92 1 2012 248 258
    • (2012) Signal Process. , vol.92 , Issue.1 , pp. 248-258
    • Tang, B.1    Dong, S.2    Song, T.3
  • 64
    • 70349170914 scopus 로고    scopus 로고
    • Efficient implementation of RMVB for eyeblink artifacts removal of EEG via STF-TS modeling
    • Y. Wongsawat, Efficient implementation of RMVB for eyeblink artifacts removal of EEG via STF-TS modeling, in: 2008 Proceedings of ROBIO, 2008, pp. 1567-1572.
    • (2008) 2008 Proceedings of ROBIO , pp. 1567-1572
    • Wongsawat, Y.1
  • 65
    • 84901190409 scopus 로고    scopus 로고
    • Illumination preprocessing for face images based on empirical mode decomposition
    • X. Xie Illumination preprocessing for face images based on empirical mode decomposition Signal Process. 103 0 2014 250 257
    • (2014) Signal Process. , vol.103 , pp. 250-257
    • Xie, X.1
  • 66
    • 66849115117 scopus 로고    scopus 로고
    • Dictionary learning for sparse approximations with the majorization method
    • M. Yaghoobi, T. Blumensath, and M.E. Davies Dictionary learning for sparse approximations with the majorization method IEEE Trans. Signal Process. 57 June (6) 2009 2178 2191
    • (2009) IEEE Trans. Signal Process. , vol.57 , Issue.JUNE 6 , pp. 2178-2191
    • Yaghoobi, M.1    Blumensath, T.2    Davies, M.E.3
  • 67
    • 84890306702 scopus 로고    scopus 로고
    • Improved Hilbert-Huang transform based weak signal detection methodology and its application on incipient fault diagnosis and ECG signal analysis
    • J. Yan, and L. Lu Improved Hilbert-Huang transform based weak signal detection methodology and its application on incipient fault diagnosis and ECG signal analysis Signal Process. 98 2014 74 87
    • (2014) Signal Process. , vol.98 , pp. 74-87
    • Yan, J.1    Lu, L.2
  • 68
    • 80054777307 scopus 로고    scopus 로고
    • Compressed sensing of complex-valued data
    • S. Yu, A.S. Khwaja, and J. Ma Compressed sensing of complex-valued data Signal Process. 92 2 2012 357 362
    • (2012) Signal Process. , vol.92 , Issue.2 , pp. 357-362
    • Yu, S.1    Khwaja, A.S.2    Ma, J.3
  • 69
    • 84887358012 scopus 로고    scopus 로고
    • EOG artifact correction from EEG recording using stationary subspace analysis and empirical mode decomposition
    • H. Zeng, A. Song, R. Yan, and H. Qin EOG artifact correction from EEG recording using stationary subspace analysis and empirical mode decomposition Sensors 13 11 2013 14839 14859
    • (2013) Sensors , vol.13 , Issue.11 , pp. 14839-14859
    • Zeng, H.1    Song, A.2    Yan, R.3    Qin, H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.