-
1
-
-
80054735370
-
Employing spatially constrained ICA and wavelet denoising, for automatic removal of artifacts from multichannel EEG data
-
M.T. Akhtar, W. Mitsuhashi, and C.J. James Employing spatially constrained ICA and wavelet denoising, for automatic removal of artifacts from multichannel EEG data Signal Process. 92 2 2012 401 416
-
(2012)
Signal Process.
, vol.92
, Issue.2
, pp. 401-416
-
-
Akhtar, M.T.1
Mitsuhashi, W.2
James, C.J.3
-
2
-
-
84857710417
-
Optimization with sparsity-inducing penalties
-
F. Bach, R. Jenatton, J. Mairal, and G. Obozinski Optimization with sparsity-inducing penalties Found. Trends Mach. Learn. 4 1 2012 1 106
-
(2012)
Found. Trends Mach. Learn.
, vol.4
, Issue.1
, pp. 1-106
-
-
Bach, F.1
Jenatton, R.2
Mairal, J.3
Obozinski, G.4
-
3
-
-
85014561619
-
A fast iterative shrinkage-thresholding algorithm for linear inverse problems
-
A. Beck, and M. Teboulle A fast iterative shrinkage-thresholding algorithm for linear inverse problems SIAM J. Imag. Sci. 2 1 2009 183 202
-
(2009)
SIAM J. Imag. Sci.
, vol.2
, Issue.1
, pp. 183-202
-
-
Beck, A.1
Teboulle, M.2
-
4
-
-
57349174008
-
Enhancing sparsity by reweighted l1 minimization
-
E.J. Candès, M.B. Wakin, and S. Boyd Enhancing sparsity by reweighted l1 minimization J. Fourier Anal. Appl. 14 December (5) 2008 877 905
-
(2008)
J. Fourier Anal. Appl.
, vol.14
, Issue.DECEMBER 5
, pp. 877-905
-
-
Candès, E.J.1
Wakin, M.B.2
Boyd, S.3
-
5
-
-
0035307274
-
Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization
-
M. Cetin, and W.C. Karl Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization IEEE Trans. Image Process. 10 April (4) 2001 623 631
-
(2001)
IEEE Trans. Image Process.
, vol.10
, Issue.APRIL 4
, pp. 623-631
-
-
Cetin, M.1
Karl, W.C.2
-
6
-
-
0032022704
-
Nonlinear wavelet image processing: Variational problems, compression, and noise removal through wavelet shrinkage
-
A. Chambolle, R.A. de Vore, N.-Y. Lee, and B.J. Lucier Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage IEEE Trans. Image Process. 7 March (3) 1998 319 335
-
(1998)
IEEE Trans. Image Process.
, vol.7
, Issue.MARCH 3
, pp. 319-335
-
-
Chambolle, A.1
De Vore, R.A.2
Lee, N.-Y.3
Lucier, B.J.4
-
8
-
-
64249151036
-
Using empirical mode decomposition for iris recognition
-
C.-P. Chang, J.-C. Lee, Y. Su, P.S. Huang, and T.-M. Tu Using empirical mode decomposition for iris recognition Comput. Stand. Interfaces 31 4 2009 729 739
-
(2009)
Comput. Stand. Interfaces
, vol.31
, Issue.4
, pp. 729-739
-
-
Chang, C.-P.1
Lee, J.-C.2
Su, Y.3
Huang, P.S.4
Tu, T.-M.5
-
9
-
-
84880438923
-
Inter-trial analysis of post-movement beta activities in EEG signals using multivariate empirical mode decomposition
-
H.-C. Chang, P.-L. Lee, M.-T. Lo, Y.-T. Wu, K.-W. Wang, and G.-Y. Lan Inter-trial analysis of post-movement beta activities in EEG signals using multivariate empirical mode decomposition IEEE Trans. Neural Syst. Rehabil. Eng. 21 July (4) 2013 607 615
-
(2013)
IEEE Trans. Neural Syst. Rehabil. Eng.
, vol.21
, Issue.JULY 4
, pp. 607-615
-
-
Chang, H.-C.1
Lee, P.-L.2
Lo, M.-T.3
Wu, Y.-T.4
Wang, K.-W.5
Lan, G.-Y.6
-
10
-
-
84903287278
-
Group-sparse signal denoising: Non-convex regularization, convex optimization
-
P.-Y. Chen, and I.W. Selesnick Group-sparse signal denoising: non-convex regularization, convex optimization IEEE Trans. Signal Process. 62 July (13) 2014 3464 3478
-
(2014)
IEEE Trans. Signal Process.
, vol.62
, Issue.JULY 13
, pp. 3464-3478
-
-
Chen, P.-Y.1
Selesnick, I.W.2
-
12
-
-
53549102752
-
Integration of amplitude and phase statistics for complete artifact removal in independent components of neuromagnetic recordings
-
J. Dammers, M. Schiek, F. Boers, C. Silex, M. Zvyagintsev, U. Pietrzyk, and K. Mathiak Integration of amplitude and phase statistics for complete artifact removal in independent components of neuromagnetic recordings IEEE Trans. Biomed. Eng. 55 October (10) 2008 2353 2362
-
(2008)
IEEE Trans. Biomed. Eng.
, vol.55
, Issue.OCTOBER 10
, pp. 2353-2362
-
-
Dammers, J.1
Schiek, M.2
Boers, F.3
Silex, C.4
Zvyagintsev, M.5
Pietrzyk, U.6
Mathiak, K.7
-
14
-
-
0141975226
-
Reconstruction of wavelet coefficients using total variation minimization
-
S. Durand, and J. Froment Reconstruction of wavelet coefficients using total variation minimization SIAM J. Sci. Comput. 24 5 2003 1754 1767
-
(2003)
SIAM J. Sci. Comput.
, vol.24
, Issue.5
, pp. 1754-1767
-
-
Durand, S.1
Froment, J.2
-
15
-
-
36749072615
-
Majorization-minimization algorithms for wavelet-based image restoration
-
M. Figueiredo, J. Bioucas-Dias, and R. Nowak Majorization-minimization algorithms for wavelet-based image restoration IEEE Trans. Image Process. 16 December (12) 2007 2980 2991
-
(2007)
IEEE Trans. Image Process.
, vol.16
, Issue.DECEMBER 12
, pp. 2980-2991
-
-
Figueiredo, M.1
Bioucas-Dias, J.2
Nowak, R.3
-
16
-
-
80051473062
-
Multivariate empirical mode decomposition and application to multichannel filtering
-
J. Fleureau, A. Kachenoura, L. Albera, J.-C. Nunes, and L. Senhadji Multivariate empirical mode decomposition and application to multichannel filtering Signal Process. 91 12 2011 2783 2792
-
(2011)
Signal Process.
, vol.91
, Issue.12
, pp. 2783-2792
-
-
Fleureau, J.1
Kachenoura, A.2
Albera, L.3
Nunes, J.-C.4
Senhadji, L.5
-
17
-
-
2942640138
-
On sparse representations in arbitrary redundant bases
-
J.-J. Fuchs On sparse representations in arbitrary redundant bases IEEE Trans. Inf. Theory 50 6 2004 1341 1344
-
(2004)
IEEE Trans. Inf. Theory
, vol.50
, Issue.6
, pp. 1341-1344
-
-
Fuchs, J.-J.1
-
18
-
-
0032282297
-
Wavelet shrinkage denoising using the non-negative garrote
-
H. Gao Wavelet shrinkage denoising using the non-negative garrote J. Comput. Graph. Stat. 7 4 1998 469 488
-
(1998)
J. Comput. Graph. Stat.
, vol.7
, Issue.4
, pp. 469-488
-
-
Gao, H.1
-
19
-
-
84874934387
-
A balanced combination of Tikhonov and total variation regularizations for reconstruction of piecewise-smooth signals
-
A. Gholami, and S.M. Hosseini A balanced combination of Tikhonov and total variation regularizations for reconstruction of piecewise-smooth signals Signal Process. 93 7 2013 1945 1960
-
(2013)
Signal Process.
, vol.93
, Issue.7
, pp. 1945-1960
-
-
Gholami, A.1
Hosseini, S.M.2
-
20
-
-
84860864849
-
Automatic removal of ocular artifacts using adaptive filtering and independent component analysis for electroencephalogram data
-
C. Guerrero-Mosquera, and A. Navia-Vázquez Automatic removal of ocular artifacts using adaptive filtering and independent component analysis for electroencephalogram data IET Signal Process. 6 2 2012 99 106
-
(2012)
IET Signal Process.
, vol.6
, Issue.2
, pp. 99-106
-
-
Guerrero-Mosquera, C.1
Navia-Vázquez, A.2
-
21
-
-
32644438199
-
Speech pitch determination based on Hilbert-Huang transform
-
H. Huang, and J. Pan Speech pitch determination based on Hilbert-Huang transform Signal Process. 86 April (4) 2006 792 803
-
(2006)
Signal Process.
, vol.86
, Issue.APRIL 4
, pp. 792-803
-
-
Huang, H.1
Pan, J.2
-
22
-
-
5444236478
-
The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis
-
(March)
-
N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N.C. Yen, C.C. Tung, H.H. Liu, The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. R. Soc. Lond. A, 454 (March) (1998) 903-995.
-
(1998)
Proc. R. Soc. Lond. A
, vol.454
, pp. 903-995
-
-
Huang, N.E.1
Shen, Z.2
Long, S.R.3
Wu, M.C.4
Shih, H.H.5
Zheng, Q.6
Yen, N.C.7
Tung, C.C.8
Liu, H.H.9
-
23
-
-
1542357546
-
A confidence limit for the empirical mode decomposition and Hilbert spectral analysis
-
(September (2037))
-
N.E. Huang, M.-L.C. Wu, S.R. Long, S.S.P. Shen, W. Qu, P. Gloersen, K.L. Fan, A confidence limit for the empirical mode decomposition and Hilbert spectral analysis, Proc. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 459 (September (2037)) (2003) 2317-2345.
-
(2003)
Proc. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci.
, vol.459
, pp. 2317-2345
-
-
Huang, N.E.1
Wu, M.-L.C.2
Long, S.R.3
Shen, S.S.P.4
Qu, W.5
Gloersen, P.6
Fan, K.L.7
-
24
-
-
1342332031
-
A tutorial on MM algorithms
-
D.R. Hunter, and K. Lange A tutorial on MM algorithms Am. Stat. 58 2004 30 37
-
(2004)
Am. Stat.
, vol.58
, pp. 30-37
-
-
Hunter, D.R.1
Lange, K.2
-
26
-
-
1942472547
-
Automatic removal of eye movement and blink artifacts from EEG data using blind component separation
-
C.A. Joyce, I.F. Gorodnitsky, and M. Kutas Automatic removal of eye movement and blink artifacts from EEG data using blind component separation Psychophysiology 41 2 2004 313 325
-
(2004)
Psychophysiology
, vol.41
, Issue.2
, pp. 313-325
-
-
Joyce, C.A.1
Gorodnitsky, I.F.2
Kutas, M.3
-
27
-
-
80054082634
-
A signal processing approach to generalized 1-d total variation
-
F.I. Karahanoglu, I. Bayram, and D. Van De Ville A signal processing approach to generalized 1-d total variation IEEE Trans. Signal Process. 59 November (11) 2011 5265 5274
-
(2011)
IEEE Trans. Signal Process.
, vol.59
, Issue.NOVEMBER 11
, pp. 5265-5274
-
-
Karahanoglu, F.I.1
Bayram, I.2
Van De Ville, D.3
-
28
-
-
38949158757
-
Explicit formula for the inverse of a tridiagonal matrix by backward continued fractions
-
E. Kilic Explicit formula for the inverse of a tridiagonal matrix by backward continued fractions Appl. Math. Comput. 197 1 2008 345 357
-
(2008)
Appl. Math. Comput.
, vol.197
, Issue.1
, pp. 345-357
-
-
Kilic, E.1
-
29
-
-
84865432700
-
The inverse of banded matrices
-
E. Kilic, and P. Stanica The inverse of banded matrices J. Comput. Appl. Math. 237 1 2013 126 135
-
(2013)
J. Comput. Appl. Math.
, vol.237
, Issue.1
, pp. 126-135
-
-
Kilic, E.1
Stanica, P.2
-
32
-
-
63449122839
-
Development of EMD-based denoising methods inspired by wavelet thresholding
-
Y. Kopsinis, and S. McLaughlin Development of EMD-based denoising methods inspired by wavelet thresholding IEEE Trans. Signal Process. 57 April (4) 2009 1351 1362
-
(2009)
IEEE Trans. Signal Process.
, vol.57
, Issue.APRIL 4
, pp. 1351-1362
-
-
Kopsinis, Y.1
McLaughlin, S.2
-
33
-
-
70049113231
-
Sparse regression using mixed norms
-
M. Kowalski Sparse regression using mixed norms Appl. Comput. Harmonic Anal. 27 3 2009 303 324
-
(2009)
Appl. Comput. Harmonic Anal.
, vol.27
, Issue.3
, pp. 303-324
-
-
Kowalski, M.1
-
34
-
-
79957439473
-
Sparse solutions of underdetermined linear systems
-
W. Freeden, Springer
-
I. Kozlov, and A. Petukhov Sparse solutions of underdetermined linear systems W. Freeden, Handbook of Geomathematics 2010 Springer
-
(2010)
Handbook of Geomathematics
-
-
Kozlov, I.1
Petukhov, A.2
-
36
-
-
77950023906
-
Optimization transfer using surrogate objective functions
-
K. Lange, D. Hunter, and I. Yang Optimization transfer using surrogate objective functions J. Comput. Graph. Stat. 9 2000 1 20
-
(2000)
J. Comput. Graph. Stat.
, vol.9
, pp. 1-20
-
-
Lange, K.1
Hunter, D.2
Yang, I.3
-
37
-
-
84856904725
-
Automatic artifact rejection from multichannel scalp EEG by wavelet ICA
-
N. Mammone, F. L a Foresta, and F.C. Morabito Automatic artifact rejection from multichannel scalp EEG by wavelet ICA IEEE J. Sens. 12 March (3) 2012 533 542
-
(2012)
IEEE J. Sens.
, vol.12
, Issue.MARCH 3
, pp. 533-542
-
-
Mammone, N.1
Foresta F, L.A.2
Morabito, F.C.3
-
39
-
-
85032750818
-
Empirical mode decomposition-based time-frequency analysis of multivariate signals: The power of adaptive data analysis
-
D.P. Mandic, N.U. Rehman, Z. Wu, and N.E. Huang Empirical mode decomposition-based time-frequency analysis of multivariate signals: the power of adaptive data analysis IEEE Signal Process. Mag. 30 November (6) 2013 74 86
-
(2013)
IEEE Signal Process. Mag.
, vol.30
, Issue.NOVEMBER 6
, pp. 74-86
-
-
Mandic, D.P.1
Rehman, N.U.2
Wu, Z.3
Huang, N.E.4
-
40
-
-
84856283861
-
Wavelet-based motion artifact removal for functional near-infrared spectroscopy
-
B. Molavi, and G.A. Dumont Wavelet-based motion artifact removal for functional near-infrared spectroscopy Physiol. Meas. 33 2 2012 259
-
(2012)
Physiol. Meas.
, vol.33
, Issue.2
, pp. 259
-
-
Molavi, B.1
Dumont, G.A.2
-
41
-
-
84865346016
-
Artifact suppression from EEG signals using data adaptive time domain filtering
-
M.K.I. Molla, M.R. Islam, T. Tanaka, and T.M. Rutkowski Artifact suppression from EEG signals using data adaptive time domain filtering Neurocomputing 97 2012 297 308
-
(2012)
Neurocomputing
, vol.97
, pp. 297-308
-
-
Molla, M.K.I.1
Islam, M.R.2
Tanaka, T.3
Rutkowski, T.M.4
-
42
-
-
84867593933
-
Multivariate EMD based approach to EOG artifacts separation from EEG
-
M.K.I. Molla, T. Tanaka, T.M. Rutkowski, Multivariate EMD based approach to EOG artifacts separation from EEG, in: 2012 Proceedings of ICASSP, 2012, pp. 653-656.
-
(2012)
2012 Proceedings of ICASSP
, pp. 653-656
-
-
Molla, M.K.I.1
Tanaka, T.2
Rutkowski, T.M.3
-
43
-
-
78049409321
-
Separation of EOG artifacts from EEG signals using bivariate EMD
-
M.K.I. Molla, T. Tanaka, T.M. Rutkowski, A. Cichocki, Separation of EOG artifacts from EEG signals using bivariate EMD, in: 2010 Proceedings of ICASSP, 2010, pp. 562-565.
-
(2010)
2010 Proceedings of ICASSP
, pp. 562-565
-
-
Molla, M.K.I.1
Tanaka, T.2
Rutkowski, T.M.3
Cichocki, A.4
-
44
-
-
50049106593
-
Removal of the eye-blink artifacts from EEGs via STF-TS modeling and robust minimum variance beamforming
-
K. Nazarpour, Y. Wongsawat, S. Sanei, J.A. Chambers, and S. Oraintara Removal of the eye-blink artifacts from EEGs via STF-TS modeling and robust minimum variance beamforming IEEE Trans. Biomed. Eng. 55 9 2008 2221 2231
-
(2008)
IEEE Trans. Biomed. Eng.
, vol.55
, Issue.9
, pp. 2221-2231
-
-
Nazarpour, K.1
Wongsawat, Y.2
Sanei, S.3
Chambers, J.A.4
Oraintara, S.5
-
46
-
-
33748416181
-
Analysis of the recovery of edges in images and signals by minimizing nonconvex regularized least-squares
-
M. Nikolova Analysis of the recovery of edges in images and signals by minimizing nonconvex regularized least-squares Multiscale Model. Simul. 4 3 2005 960 991
-
(2005)
Multiscale Model. Simul.
, vol.4
, Issue.3
, pp. 960-991
-
-
Nikolova, M.1
-
47
-
-
84881139498
-
ECG enhancement and QRS detection based on sparse derivatives
-
X. Ning, and I.W. Selesnick ECG enhancement and QRS detection based on sparse derivatives Biomed. Signal Process. Control 8 6 2013 713 723
-
(2013)
Biomed. Signal Process. Control
, vol.8
, Issue.6
, pp. 713-723
-
-
Ning, X.1
Selesnick, I.W.2
-
48
-
-
84864220328
-
Online removal of eye movement and blink EEG artifacts using a high-speed eye tracker
-
B. Noureddin, P.D. Lawrence, and G.E. Birch Online removal of eye movement and blink EEG artifacts using a high-speed eye tracker IEEE Trans. Biomed. Eng. 59 8 2012 2103 2110
-
(2012)
IEEE Trans. Biomed. Eng.
, vol.59
, Issue.8
, pp. 2103-2110
-
-
Noureddin, B.1
Lawrence, P.D.2
Birch, G.E.3
-
49
-
-
84875184099
-
A time-frequency based approach for generalized phase synchrony assessment in nonstationary multivariate signals
-
A. Omidvarnia, G. Azemi, P.B. Colditz, and B. Boashash A time-frequency based approach for generalized phase synchrony assessment in nonstationary multivariate signals Digit. Signal Process. 23 3 2013 780 790
-
(2013)
Digit. Signal Process.
, vol.23
, Issue.3
, pp. 780-790
-
-
Omidvarnia, A.1
Azemi, G.2
Colditz, P.B.3
Boashash, B.4
-
50
-
-
84923368417
-
EEG gamma band oscillations differentiate the planning of spatially directed movements of the arm versus eye: Multivariate empirical mode decomposition analysis
-
C. Park, M. Plank, J. Snider, S. Kim, H.C. Huang, S. Gepshtein, T.P. Coleman, and H. Poizner EEG gamma band oscillations differentiate the planning of spatially directed movements of the arm versus eye: multivariate empirical mode decomposition analysis IEEE Trans. Neural Syst. Rehabil. Eng. 22 September (5) 2014 1083 1096
-
(2014)
IEEE Trans. Neural Syst. Rehabil. Eng.
, vol.22
, Issue.SEPTEMBER 5
, pp. 1083-1096
-
-
Park, C.1
Plank, M.2
Snider, J.3
Kim, S.4
Huang, H.C.5
Gepshtein, S.6
Coleman, T.P.7
Poizner, H.8
-
52
-
-
77952080754
-
Multivariate empirical mode decomposition
-
N.U. Rehman, D.P. Mandic, Multivariate empirical mode decomposition, Proc. R. Soc. A, 466 (2117) (2010) 1291-1302.
-
(2010)
Proc. R. Soc. A
, vol.466
, Issue.2117
, pp. 1291-1302
-
-
Rehman, N.U.1
Mandic, D.P.2
-
53
-
-
79954532442
-
Filter bank property of multivariate empirical mode decomposition
-
N.U. Rehman, and D.P. Mandic Filter bank property of multivariate empirical mode decomposition IEEE Trans. Signal Process. 59 May (5) 2011 2421 2426
-
(2011)
IEEE Trans. Signal Process.
, vol.59
, Issue.MAY 5
, pp. 2421-2426
-
-
Rehman, N.U.1
Mandic, D.P.2
-
54
-
-
85008018510
-
One or two frequencies? the empirical mode decomposition answers
-
G. Rilling, and P. Flandrin One or two frequencies? The empirical mode decomposition answers IEEE Trans. Signal Process. 56 1 2008 85 95
-
(2008)
IEEE Trans. Signal Process.
, vol.56
, Issue.1
, pp. 85-95
-
-
Rilling, G.1
Flandrin, P.2
-
56
-
-
33749261940
-
Wavelet analysis for detecting body-movement artifacts in optical topography signals
-
H. Sato, N. Tanaka, M. Uchida, Y. Hirabayashi, M. Kanai, T. Ashida, I. Konishi, and A. Maki Wavelet analysis for detecting body-movement artifacts in optical topography signals NeuroImage 33 2 2006 580 587
-
(2006)
NeuroImage
, vol.33
, Issue.2
, pp. 580-587
-
-
Sato, H.1
Tanaka, N.2
Uchida, M.3
Hirabayashi, Y.4
Kanai, M.5
Ashida, T.6
Konishi, I.7
Maki, A.8
-
57
-
-
84993994068
-
Majorization-minimization algorithms for nonsmoothly penalized objective functions
-
E.D. Schifano, R.L. Strawderman, and M.T. Wells Majorization-minimization algorithms for nonsmoothly penalized objective functions Electron. J. Stat. 4 2010 1258 1299
-
(2010)
Electron. J. Stat.
, vol.4
, pp. 1258-1299
-
-
Schifano, E.D.1
Strawderman, R.L.2
Wells, M.T.3
-
58
-
-
84870535103
-
Polynomial smoothing of time series with additive step discontinuities
-
I.W. Selesnick, S. Arnold, and V. Dantham Polynomial smoothing of time series with additive step discontinuities IEEE Trans. Signal Process. 60 December (12) 2012 6305 6318
-
(2012)
IEEE Trans. Signal Process.
, vol.60
, Issue.DECEMBER 12
, pp. 6305-6318
-
-
Selesnick, I.W.1
Arnold, S.2
Dantham, V.3
-
59
-
-
84894593844
-
Sparse signal estimation by maximally sparse convex optimization
-
I.W. Selesnick, and I. Bayram Sparse signal estimation by maximally sparse convex optimization IEEE Trans. Signal Process. 62 March (5) 2014 1078 1092
-
(2014)
IEEE Trans. Signal Process.
, vol.62
, Issue.MARCH 5
, pp. 1078-1092
-
-
Selesnick, I.W.1
Bayram, I.2
-
60
-
-
84913558061
-
Transient artifact reduction algorithm (TARA) based on sparse optimization
-
I.W. Selesnick, H.L. Graber, Y. Ding, T. Zhang, and R.L. Barbour Transient artifact reduction algorithm (TARA) based on sparse optimization IEEE Trans. Signal Process. 62 December (24) 2014 6596 6611
-
(2014)
IEEE Trans. Signal Process.
, vol.62
, Issue.DECEMBER 24
, pp. 6596-6611
-
-
Selesnick, I.W.1
Graber, H.L.2
Ding, Y.3
Zhang, T.4
Barbour, R.L.5
-
61
-
-
84894519294
-
Simultaneous low-pass filtering and total variation denoising
-
I.W. Selesnick, H.L. Graber, S. Douglas, S. Pfeil, and R.L. Barbour Simultaneous low-pass filtering and total variation denoising IEEE Trans. Signal Process. 62 March (5) 2014 1109 1124
-
(2014)
IEEE Trans. Signal Process.
, vol.62
, Issue.MARCH 5
, pp. 1109-1124
-
-
Selesnick, I.W.1
Graber, H.L.2
Douglas, S.3
Pfeil, S.4
Barbour, R.L.5
-
62
-
-
80052280842
-
Method for eliminating mode mixing of empirical mode decomposition based on the revised blind source separation
-
B. Tang, S. Dong, and T. Song Method for eliminating mode mixing of empirical mode decomposition based on the revised blind source separation Signal Process. 92 1 2012 248 258
-
(2012)
Signal Process.
, vol.92
, Issue.1
, pp. 248-258
-
-
Tang, B.1
Dong, S.2
Song, T.3
-
64
-
-
70349170914
-
Efficient implementation of RMVB for eyeblink artifacts removal of EEG via STF-TS modeling
-
Y. Wongsawat, Efficient implementation of RMVB for eyeblink artifacts removal of EEG via STF-TS modeling, in: 2008 Proceedings of ROBIO, 2008, pp. 1567-1572.
-
(2008)
2008 Proceedings of ROBIO
, pp. 1567-1572
-
-
Wongsawat, Y.1
-
65
-
-
84901190409
-
Illumination preprocessing for face images based on empirical mode decomposition
-
X. Xie Illumination preprocessing for face images based on empirical mode decomposition Signal Process. 103 0 2014 250 257
-
(2014)
Signal Process.
, vol.103
, pp. 250-257
-
-
Xie, X.1
-
66
-
-
66849115117
-
Dictionary learning for sparse approximations with the majorization method
-
M. Yaghoobi, T. Blumensath, and M.E. Davies Dictionary learning for sparse approximations with the majorization method IEEE Trans. Signal Process. 57 June (6) 2009 2178 2191
-
(2009)
IEEE Trans. Signal Process.
, vol.57
, Issue.JUNE 6
, pp. 2178-2191
-
-
Yaghoobi, M.1
Blumensath, T.2
Davies, M.E.3
-
67
-
-
84890306702
-
Improved Hilbert-Huang transform based weak signal detection methodology and its application on incipient fault diagnosis and ECG signal analysis
-
J. Yan, and L. Lu Improved Hilbert-Huang transform based weak signal detection methodology and its application on incipient fault diagnosis and ECG signal analysis Signal Process. 98 2014 74 87
-
(2014)
Signal Process.
, vol.98
, pp. 74-87
-
-
Yan, J.1
Lu, L.2
-
68
-
-
80054777307
-
Compressed sensing of complex-valued data
-
S. Yu, A.S. Khwaja, and J. Ma Compressed sensing of complex-valued data Signal Process. 92 2 2012 357 362
-
(2012)
Signal Process.
, vol.92
, Issue.2
, pp. 357-362
-
-
Yu, S.1
Khwaja, A.S.2
Ma, J.3
-
69
-
-
84887358012
-
EOG artifact correction from EEG recording using stationary subspace analysis and empirical mode decomposition
-
H. Zeng, A. Song, R. Yan, and H. Qin EOG artifact correction from EEG recording using stationary subspace analysis and empirical mode decomposition Sensors 13 11 2013 14839 14859
-
(2013)
Sensors
, vol.13
, Issue.11
, pp. 14839-14859
-
-
Zeng, H.1
Song, A.2
Yan, R.3
Qin, H.4
|