메뉴 건너뛰기




Volumn 82, Issue 3, 2015, Pages 1325-1341

Dissipativity and passivity analysis of T–S fuzzy neural networks with probabilistic time-varying delays: a quadratic convex combination approach

Author keywords

Dissipativity; Leakage delay; Probabilistic time varying delay; Quadratic convex combination approach; T S fuzzy neural networks

Indexed keywords

FUNCTIONS; FUZZY INFERENCE; FUZZY LOGIC; LINEAR MATRIX INEQUALITIES; STOCHASTIC SYSTEMS; TIME DELAY; TIME VARYING CONTROL SYSTEMS; TIME VARYING NETWORKS;

EID: 84944228598     PISSN: 0924090X     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11071-015-2241-8     Document Type: Article
Times cited : (18)

References (38)
  • 1
    • 84875381806 scopus 로고    scopus 로고
    • Evaluation of fully fuzzy matrix equations by fuzzy neural network
    • Mosleh, M.: Evaluation of fully fuzzy matrix equations by fuzzy neural network. Appl. Math. Model. 37, 6364–6376 (2013)
    • (2013) Appl. Math. Model. , vol.37 , pp. 6364-6376
    • Mosleh, M.1
  • 2
    • 84902528860 scopus 로고    scopus 로고
    • Receding horizon disturbance attenuation for Takagi–Sugeno fuzzy switched dynamic neural networks
    • Ahn, C.K.: Receding horizon disturbance attenuation for Takagi–Sugeno fuzzy switched dynamic neural networks. Inf. Sci. 280, 53–63 (2014)
    • (2014) Inf. Sci. , vol.280 , pp. 53-63
    • Ahn, C.K.1
  • 3
    • 78049396082 scopus 로고    scopus 로고
    • Delay decomposition approach to stability analysis for uncertain fuzzy Hopfield neural networks with time-varying delay
    • Balasubramaniam, P., Chandran, R.: Delay decomposition approach to stability analysis for uncertain fuzzy Hopfield neural networks with time-varying delay. Commun. Nonlinear Sci. Numer. Simul. 16, 2098–2108 (2011)
    • (2011) Commun. Nonlinear Sci. Numer. Simul. , vol.16 , pp. 2098-2108
    • Balasubramaniam, P.1    Chandran, R.2
  • 4
    • 84944231916 scopus 로고    scopus 로고
    • Robust stability analysis for T–S fuzzy neural networks with time-varying delays
    • Lin, P.L.: Robust stability analysis for T–S fuzzy neural networks with time-varying delays. Univers. J. Control Autom. 2, 32–41 (2014)
    • (2014) Univers. J. Control Autom. , vol.2 , pp. 32-41
    • Lin, P.L.1
  • 5
    • 84876830627 scopus 로고    scopus 로고
    • Passive and exponential filter design for fuzzy neural networks
    • Ahn, C.K.: Passive and exponential filter design for fuzzy neural networks. Inf. Sci. 238, 126–137 (2013)
    • (2013) Inf. Sci. , vol.238 , pp. 126-137
    • Ahn, C.K.1
  • 6
    • 84919490660 scopus 로고    scopus 로고
    • Analysis on a class of double-wing chaotic system and its control via linear matrix inequality
    • Wang, B., Yi, X.J., Yan, H.H., Lan, Z.D.: Analysis on a class of double-wing chaotic system and its control via linear matrix inequality. Acta Phys. Sin. 63, 210502 (2014)
    • (2014) Acta Phys. Sin. , vol.63 , pp. 210502
    • Wang, B.1    Yi, X.J.2    Yan, H.H.3    Lan, Z.D.4
  • 7
    • 84971449643 scopus 로고    scopus 로고
    • Takagi–Sugeno fuzzy control for a wide class of fractional-order chaotic systems with uncertain parameters via linear matrix inequality. J. Vib
    • Wang, B., Xue, J., chen, D.: Takagi–Sugeno fuzzy control for a wide class of fractional-order chaotic systems with uncertain parameters via linear matrix inequality. J. Vib. Control (2014). doi:10.1177/1077546314546682
    • (2014) Control
    • Wang, B.1    Xue, J.2    chen, D.3
  • 8
    • 34249035773 scopus 로고    scopus 로고
    • Stability analysis of Takagi–Sugeno fuzzy cellular neural networks with time-varying delays
    • Hou, Y.Y., Liao, T.L., Yan, J.J.: Stability analysis of Takagi–Sugeno fuzzy cellular neural networks with time-varying delays. IEEE Trans. Syst. Man Cybern. Part B Cybern. 37, 720–726 (2007)
    • (2007) IEEE Trans. Syst. Man Cybern. Part B Cybern. , vol.37 , pp. 720-726
    • Hou, Y.Y.1    Liao, T.L.2    Yan, J.J.3
  • 9
    • 20444396501 scopus 로고    scopus 로고
    • Stochastic stability analysis of fuzzy Hopfield neural networks with time-varying delays
    • Huang, H., Ho, D.W.C., Lam, J.: Stochastic stability analysis of fuzzy Hopfield neural networks with time-varying delays. IEEE Trans. Circuits Syst. I 52, 251–255 (2005)
    • (2005) IEEE Trans. Circuits Syst. I , vol.52 , pp. 251-255
    • Huang, H.1    Ho, D.W.C.2    Lam, J.3
  • 10
    • 84921069225 scopus 로고    scopus 로고
    • Robust stability of Markovian jump stochastic neural networks with time delays in the leakage terms
    • Zhu, Q., Cao, J., Hayat, T., Alsaadi, F.: Robust stability of Markovian jump stochastic neural networks with time delays in the leakage terms. Neural Process. Lett. 41, 1–27 (2015)
    • (2015) Neural Process. Lett. , vol.41 , pp. 1-27
    • Zhu, Q.1    Cao, J.2    Hayat, T.3    Alsaadi, F.4
  • 11
    • 77953835896 scopus 로고    scopus 로고
    • Delay-dependent stability of neural networks of neutral type with time delay in the leakage term
    • Li, X., Cao, J.: Delay-dependent stability of neural networks of neutral type with time delay in the leakage term. Nonlinearity 23, 1709–1726 (2010)
    • (2010) Nonlinearity , vol.23 , pp. 1709-1726
    • Li, X.1    Cao, J.2
  • 12
    • 79957881211 scopus 로고    scopus 로고
    • Passivity analysis for neural networks of neutral type with Markovian jumping parameters and time delay in the leakage term
    • Balasubramaniam, P., Nagamani, G., Rakkiyappan, R.: Passivity analysis for neural networks of neutral type with Markovian jumping parameters and time delay in the leakage term. Commun. Nonlinear Sci. Numer. Simul. 16, 4422–4437 (2011)
    • (2011) Commun. Nonlinear Sci. Numer. Simul. , vol.16 , pp. 4422-4437
    • Balasubramaniam, P.1    Nagamani, G.2    Rakkiyappan, R.3
  • 13
    • 84870910676 scopus 로고    scopus 로고
    • Novel delay-distribution-dependent stability analysis for continuous-time recurrent neural networks with stochastic delay
    • Quan, W.S., Jian, F., Qing, Z.: Novel delay-distribution-dependent stability analysis for continuous-time recurrent neural networks with stochastic delay. Chin. Phys. B 21, 120701 (2012)
    • (2012) Chin. Phys. B , vol.21 , pp. 120701
    • Quan, W.S.1    Jian, F.2    Qing, Z.3
  • 14
    • 84879088407 scopus 로고    scopus 로고
    • Delay-derivative-dependent stability criterion for neural networks with probabilistic time-varying delay
    • Zhang, G., Wang, T., Li, T., Fei, S.: Delay-derivative-dependent stability criterion for neural networks with probabilistic time-varying delay. Int. J. syst. sci. 44, 2140–2151 (2013)
    • (2013) Int. J. syst. sci. , vol.44 , pp. 2140-2151
    • Zhang, G.1    Wang, T.2    Li, T.3    Fei, S.4
  • 15
    • 80255134461 scopus 로고    scopus 로고
    • An LMI approach for global robust dissipativity analysis of T–S fuzzy neural networks with interval time-varying delays
    • Muralisankar, S., Gopalakrishnan, N., Balasubramaniam, P.: An LMI approach for global robust dissipativity analysis of T–S fuzzy neural networks with interval time-varying delays. Expert Syst. Appl. 39, 3345–3355 (2012)
    • (2012) Expert Syst. Appl. , vol.39 , pp. 3345-3355
    • Muralisankar, S.1    Gopalakrishnan, N.2    Balasubramaniam, P.3
  • 16
    • 84870060237 scopus 로고    scopus 로고
    • On dissipativity of Takagi–Sugeno fuzzy descriptor systems with time-delay
    • Han, C., Wu, L., Shi, P., Zeng, Q.: On dissipativity of Takagi–Sugeno fuzzy descriptor systems with time-delay. J. Frankl. Inst. 349, 3170–3184 (2012)
    • (2012) J. Frankl. Inst. , vol.349 , pp. 3170-3184
    • Han, C.1    Wu, L.2    Shi, P.3    Zeng, Q.4
  • 17
    • 84901016195 scopus 로고    scopus 로고
    • Mixed $$H_{\infty }$$H∞ and passivity based state estimation for fuzzy neural networks with Markovian type estimator gain change
    • Zhang, D., Cai, W., Wang, Q.G.: Mixed $$H_{\infty }$$H∞ and passivity based state estimation for fuzzy neural networks with Markovian type estimator gain change. Neurocomputing 139, 321–327 (2014)
    • (2014) Neurocomputing , vol.139 , pp. 321-327
    • Zhang, D.1    Cai, W.2    Wang, Q.G.3
  • 18
    • 80054985252 scopus 로고    scopus 로고
    • Robust passivity analysis of fuzzy Cohen–Grossberg BAM neural networks with time-varying delays
    • Sakthivel, R., Arunkumar, A., Mathiyalalgan, K., Marshal Anthoni, S.: Robust passivity analysis of fuzzy Cohen–Grossberg BAM neural networks with time-varying delays. Appl. Math. Comput. 218, 3799–3809 (2011)
    • (2011) Appl. Math. Comput. , vol.218 , pp. 3799-3809
    • Sakthivel, R.1    Arunkumar, A.2    Mathiyalalgan, K.3    Marshal Anthoni, S.4
  • 19
    • 56749164029 scopus 로고    scopus 로고
    • Global robust point dissipativity of interval neural networks with mixed time-varying delays
    • Wang, L., Cao, J.: Global robust point dissipativity of interval neural networks with mixed time-varying delays. Nonlinear Dyn. 55, 169–178 (2009)
    • (2009) Nonlinear Dyn. , vol.55 , pp. 169-178
    • Wang, L.1    Cao, J.2
  • 20
    • 84855813545 scopus 로고    scopus 로고
    • On improved passivity criteria of uncertain neural networks with time-varying delays
    • Kwon, O.M., Lee, S.M., Park, J.H.: On improved passivity criteria of uncertain neural networks with time-varying delays. Nonlinear Dyn. 67, 1261–1271 (2012)
    • (2012) Nonlinear Dyn. , vol.67 , pp. 1261-1271
    • Kwon, O.M.1    Lee, S.M.2    Park, J.H.3
  • 21
    • 84855813770 scopus 로고    scopus 로고
    • Passivity of uncertain neural networks with both leakage delay and time-varying delay
    • Song, Q., Cao, J.: Passivity of uncertain neural networks with both leakage delay and time-varying delay. Nonlinear Dyn. 67, 1695–1707 (2012)
    • (2012) Nonlinear Dyn. , vol.67 , pp. 1695-1707
    • Song, Q.1    Cao, J.2
  • 22
    • 84871012577 scopus 로고    scopus 로고
    • State estimation of neural networks with time-varying delays and Markovian jumping parameter based on passivity theory
    • Lakshmanan, S., Park, J.H., Ji, D.H., Jung, H.Y., Nagamani, G.: State estimation of neural networks with time-varying delays and Markovian jumping parameter based on passivity theory. Nonlinear Dyn. 70, 1421–1434 (2012)
    • (2012) Nonlinear Dyn. , vol.70 , pp. 1421-1434
    • Lakshmanan, S.1    Park, J.H.2    Ji, D.H.3    Jung, H.Y.4    Nagamani, G.5
  • 23
    • 82255163992 scopus 로고    scopus 로고
    • Passivity analysis for discrete-time switched neural networks with various activation functions and mixed time delays
    • Zhang, D., Yu, L.: Passivity analysis for discrete-time switched neural networks with various activation functions and mixed time delays. Nonlinear Dyn. 67, 403–411 (2012)
    • (2012) Nonlinear Dyn. , vol.67 , pp. 403-411
    • Zhang, D.1    Yu, L.2
  • 24
    • 85027945876 scopus 로고    scopus 로고
    • Further results on dissipativity analysis of neural networks with time-varying delay and randomly occurring uncertainties
    • Zeng, H.B., Park, J.H., Xia, J.W.: Further results on dissipativity analysis of neural networks with time-varying delay and randomly occurring uncertainties. Nonlinear Dyn. 79, 83–91 (2015)
    • (2015) Nonlinear Dyn. , vol.79 , pp. 83-91
    • Zeng, H.B.1    Park, J.H.2    Xia, J.W.3
  • 25
    • 80052024130 scopus 로고    scopus 로고
    • Note on stability of linear systems with time-varying delay
    • Kim, J.H.: Note on stability of linear systems with time-varying delay. Automatica 47, 2118–2121 (2011)
    • (2011) Automatica , vol.47 , pp. 2118-2121
    • Kim, J.H.1
  • 26
    • 84875882811 scopus 로고    scopus 로고
    • Stability analysis for neural networks with time-varying delay based on quadratic convex combination
    • Zhang, H., Yang, F., Liu, X., Zhang, Q.: Stability analysis for neural networks with time-varying delay based on quadratic convex combination. IEEE Trans. Neural Netw. Learn. Syst. 24, 513–521 (2013)
    • (2013) IEEE Trans. Neural Netw. Learn. Syst. , vol.24 , pp. 513-521
    • Zhang, H.1    Yang, F.2    Liu, X.3    Zhang, Q.4
  • 27
    • 84880919463 scopus 로고    scopus 로고
    • Design of sampled data state estimator for Markovian jumping neural networks with leakage time-varying delays and discontinuous Lyapunov functional approach
    • Rakkiyappan, R., Zhu, Q., Radhika, T.: Design of sampled data state estimator for Markovian jumping neural networks with leakage time-varying delays and discontinuous Lyapunov functional approach. Nonlinear Dyn. 73, 1367–1383 (2013)
    • (2013) Nonlinear Dyn. , vol.73 , pp. 1367-1383
    • Rakkiyappan, R.1    Zhu, Q.2    Radhika, T.3
  • 28
    • 84862868271 scopus 로고    scopus 로고
    • Exponential and almost sure exponential stability of stochastic fuzzy delayed Cohen–Grossberg neural networks
    • Zhu, Q., Li, X.: Exponential and almost sure exponential stability of stochastic fuzzy delayed Cohen–Grossberg neural networks. Fuzzy Sets Syst. 203, 74–94 (2012)
    • (2012) Fuzzy Sets Syst. , vol.203 , pp. 74-94
    • Zhu, Q.1    Li, X.2
  • 29
    • 84897961888 scopus 로고    scopus 로고
    • Stochastic stability of Markovian jump BAM neural networks with leakage delays and impulse control
    • Zhu, Q., Rakkiyappan, R., Chandrasekar, A.: Stochastic stability of Markovian jump BAM neural networks with leakage delays and impulse control. Neurocomputing 136, 136–151 (2014)
    • (2014) Neurocomputing , vol.136 , pp. 136-151
    • Zhu, Q.1    Rakkiyappan, R.2    Chandrasekar, A.3
  • 30
    • 84894040421 scopus 로고    scopus 로고
    • Mean-square exponential input-to-state stability of stochastic delayed neural networks
    • Zhu, Q., Cao, J.: Mean-square exponential input-to-state stability of stochastic delayed neural networks. Neurocomputing 131, 157–163 (2014)
    • (2014) Neurocomputing , vol.131 , pp. 157-163
    • Zhu, Q.1    Cao, J.2
  • 31
    • 84925514252 scopus 로고    scopus 로고
    • Exponential input-to-state stability of stochastic Cohen–Grossberg neural networks with mixed delays
    • Zhu, Q., Cao, J., Rakkiyappan, R.: Exponential input-to-state stability of stochastic Cohen–Grossberg neural networks with mixed delays. Nonlinear Dyn. 79, 1085–1098 (2015)
    • (2015) Nonlinear Dyn. , vol.79 , pp. 1085-1098
    • Zhu, Q.1    Cao, J.2    Rakkiyappan, R.3
  • 32
    • 78650807125 scopus 로고    scopus 로고
    • Reciprocally convex approach to stability of systems with time-varying delays
    • Park, P., Ko, J.W., Jeong, C.: Reciprocally convex approach to stability of systems with time-varying delays. Automatica 47, 235–238 (2011)
    • (2011) Automatica , vol.47 , pp. 235-238
    • Park, P.1    Ko, J.W.2    Jeong, C.3
  • 34
    • 47249100270 scopus 로고    scopus 로고
    • Dissipativity analysis of neural networks with time-varying delays
    • Sun, Y., Cui, B.T.: Dissipativity analysis of neural networks with time-varying delays. Int. J. Autom. Comput. 05, 290–295 (2008)
    • (2008) Int. J. Autom. Comput. , vol.5 , pp. 290-295
    • Sun, Y.1    Cui, B.T.2
  • 36
    • 78650749917 scopus 로고    scopus 로고
    • Passivity analysis for neural networks with a time-varying delay
    • Zeng, H.B., He, Y., Wu, M., Xiao, S.P.: Passivity analysis for neural networks with a time-varying delay. Neurocomputing 74, 730–734 (2011)
    • (2011) Neurocomputing , vol.74 , pp. 730-734
    • Zeng, H.B.1    He, Y.2    Wu, M.3    Xiao, S.P.4
  • 37
    • 84863986721 scopus 로고    scopus 로고
    • Robust dissipativity analysis of neural networks with time-varying delay and randomly occurring uncertainties
    • Wu, Z.G., Park, J.H., Su, H., Chu, J.: Robust dissipativity analysis of neural networks with time-varying delay and randomly occurring uncertainties. Nonlinear Dyn. 69, 1323–1332 (2012)
    • (2012) Nonlinear Dyn , vol.69 , pp. 1323-1332
    • Wu, Z.G.1    Park, J.H.2    Su, H.3    Chu, J.4
  • 38
    • 84881309625 scopus 로고    scopus 로고
    • Delay-dependent robust dissipativity conditions for delayed neural networks with random uncertainties
    • Wang, J., Park, J.H., Shen, H., Wang, J.: Delay-dependent robust dissipativity conditions for delayed neural networks with random uncertainties. Appl. Math. Comput. 221, 710–719 (2013)
    • (2013) Appl. Math. Comput. , vol.221 , pp. 710-719
    • Wang, J.1    Park, J.H.2    Shen, H.3    Wang, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.