메뉴 건너뛰기




Volumn 21, Issue 3, 2015, Pages 351-378

Combining B&B-based hybrid feature selection and the imbalance-oriented multiple-classifier ensemble for imbalanced credit risk assessment

Author keywords

Hybrid feature selection; Imbalance oriented multiple classifier ensemble; Imbalanced credit risk assessment; Imbalanced data set

Indexed keywords


EID: 84944035778     PISSN: 20294913     EISSN: 20294921     Source Type: Journal    
DOI: 10.3846/20294913.2014.884024     Document Type: Article
Times cited : (22)

References (71)
  • 2
    • 53549120899 scopus 로고    scopus 로고
    • A neural network approach for credit risk evaluation
    • Angelini, E.; Tollo, G.; Roli, A. 2008. A neural network approach for credit risk evaluation, The Quarterly Review of Economics and Finance 48(4): 733-755. http://dx.doi.org/10.1016/j.qref.2007.04.001
    • (2008) The Quarterly Review of Economics and Finance , vol.48 , Issue.4 , pp. 733-755
    • Angelini, E.1    Tollo, G.2    Roli, A.3
  • 3
    • 0037534150 scopus 로고    scopus 로고
    • Using neural network rule extraction and decision tables for credit risk evaluation
    • Baesens, B.; Setiono, R.; Mues, C.; Vanthienen, J. 2003. Using neural network rule extraction and decision tables for credit risk evaluation, Management Science 49(3): 312-329. http://dx.doi.org/10.1287/mnsc.49.3.312.12739
    • (2003) Management Science , vol.49 , Issue.3 , pp. 312-329
    • Baesens, B.1    Setiono, R.2    Mues, C.3    Vanthienen, J.4
  • 4
    • 56349130760 scopus 로고    scopus 로고
    • Support vector machines for credit scoring and discovery of significant features
    • Bellotti, T.; Crook, J. 2008. Support vector machines for credit scoring and discovery of significant features, Expert Systems with Applications 36(2): 3302-3308. http://dx.doi.org/10.1016/j.eswa.2008.01.005
    • (2008) Expert Systems with Applications , vol.36 , Issue.2 , pp. 3302-3308
    • Bellotti, T.1    Crook, J.2
  • 5
    • 70350291569 scopus 로고    scopus 로고
    • Credit scoring with macroeconomic variables using survival analysis
    • Bellotti, T.; Crook, J. 2009. Credit scoring with macroeconomic variables using survival analysis, Journal of the Operational Research Society 60(12): 1699-1707. http://dx.doi.org/10.1057/jors.2008.130
    • (2009) Journal of the Operational Research Society , vol.60 , Issue.12 , pp. 1699-1707
    • Bellotti, T.1    Crook, J.2
  • 6
    • 79955886709 scopus 로고    scopus 로고
    • A note comparing support vector machines and ordered choice models' predictions of international banks' ratings
    • Bellotti, T.; Matousek, R.; Stewart, C. 2011. A note comparing support vector machines and ordered choice models' predictions of international banks' ratings, Decision Support Systems 51(3): 682-687. http://dx.doi.org/10.1016/j.dss.2011.03.008
    • (2011) Decision Support Systems , vol.51 , Issue.3 , pp. 682-687
    • Bellotti, T.1    Matousek, R.2    Stewart, C.3
  • 7
    • 0001209480 scopus 로고
    • Collateral and rationing: Sorting equilibria in monopolistic and competitive credit markets
    • Besanko, D.; Thakor, A. 1987. Collateral and rationing: sorting equilibria in monopolistic and competitive credit markets, International Economic Review 28(3): 671-689. http://dx.doi.org/10.2307/2526573
    • (1987) International Economic Review , vol.28 , Issue.3 , pp. 671-689
    • Besanko, D.1    Thakor, A.2
  • 8
    • 84981865845 scopus 로고
    • Rationing in credit markets with imperfect information
    • Bester, H.; Sreening, V. 1985. Rationing in credit markets with imperfect information, American Economics Review 75(4): 850-855.
    • (1985) American Economics Review , vol.75 , Issue.4 , pp. 850-855
    • Bester, H.1    Sreening, V.2
  • 10
    • 80255133264 scopus 로고    scopus 로고
    • An experimental comparison of classification algorithms for imbalanced credit scoring data sets
    • Brown, I.; Mues, C. 2012. An experimental comparison of classification algorithms for imbalanced credit scoring data sets, Expert Systems with Applications 39(3): 3446-3453.
    • (2012) Expert Systems with Applications , vol.39 , Issue.3 , pp. 3446-3453
    • Brown, I.1    Mues, C.2
  • 12
    • 27144549260 scopus 로고    scopus 로고
    • Editorial: Special issue on learning from imbalanced data sets
    • Chawla, N. V.; Japkowicz, N.; Kolcz, A. 2004. Editorial: special issue on learning from imbalanced data sets, SIGKDD Explorations 6(1): 1-6. http://dx.doi.org/10.1145/1007730.1007733
    • (2004) SIGKDD Explorations , vol.6 , Issue.1 , pp. 1-6
    • Chawla, N.V.1    Japkowicz, N.2    Kolcz, A.3
  • 13
    • 0038329332 scopus 로고    scopus 로고
    • An improved branch and bound algorithm for feature selection
    • Chen, X. 2003. An improved branch and bound algorithm for feature selection, Pattern Recognition Letters 24(12): 1925-1933. http://dx.doi.org/10.1016/S0167-8655(03)00020-5
    • (2003) Pattern Recognition Letters , vol.24 , Issue.12 , pp. 1925-1933
    • Chen, X.1
  • 15
    • 60249087645 scopus 로고    scopus 로고
    • Mining the customer credit using hybrid support vector machine technique
    • Chen, W.; Ma, C.; Ma, L. 2007. Mining the customer credit using hybrid support vector machine technique, Expert Systems with Applications 36(4): 7611-7616. http://dx.doi.org/10.1016/j.eswa.2008.09.054
    • (2007) Expert Systems with Applications , vol.36 , Issue.4 , pp. 7611-7616
    • Chen, W.1    Ma, C.2    Ma, L.3
  • 16
    • 84986159940 scopus 로고    scopus 로고
    • Application of multiple discriminant analysis (MDA) as a credit scoring and risk assessment model
    • Chijoriga, M. M. 2011. Application of multiple discriminant analysis (MDA) as a credit scoring and risk assessment model, International Journal of Emerging Markets 6(2): 132-147.
    • (2011) International Journal of Emerging Markets , vol.6 , Issue.2 , pp. 132-147
    • Chijoriga, M.M.1
  • 18
    • 56449094571 scopus 로고    scopus 로고
    • Semi-supervised and active learning with the probabilistic RBF classifier
    • Constantinopoulos, C.; Likas, A. 2008. Semi-supervised and active learning with the probabilistic RBF classifier, Artificial Neural Networks 71(13): 2489-2498. http://dx.doi.org/10.1016/j.neucom.2007.11.039
    • (2008) Artificial Neural Networks , vol.71 , Issue.13 , pp. 2489-2498
    • Constantinopoulos, C.1    Likas, A.2
  • 19
    • 34447100569 scopus 로고    scopus 로고
    • Recent developments in consumer credit risk assessment
    • Crook, J.; Edelman, D.; Thomas, L. 2007. Recent developments in consumer credit risk assessment, European Journal of Operational Research 183(3): 1447-1465. http://dx.doi.org/10.1016/j.ejor.2006.09.100
    • (2007) European Journal of Operational Research , vol.183 , Issue.3 , pp. 1447-1465
    • Crook, J.1    Edelman, D.2    Thomas, L.3
  • 20
    • 0013326060 scopus 로고    scopus 로고
    • Feature selection for classification
    • Dash, M.; Liu, H. 1997. Feature selection for classification, Intelligent Data Analysis 1(1-4): 131-156. http://dx.doi.org/10.1016/S1088-467X(97)00008-5
    • (1997) Intelligent Data Analysis , vol.1 , Issue.1-4 , pp. 131-156
    • Dash, M.1    Liu, H.2
  • 21
    • 78650260448 scopus 로고    scopus 로고
    • Credit scorecard based on logistic regression with random coefficients
    • Dong, G.; Lai, K.; Yen, J. 2010. Credit scorecard based on logistic regression with random coefficients, Procedia Computer Science 1(1): 2463-2468. http://dx.doi.org/10.1016/j.procs.2010.04.278
    • (2010) Procedia Computer Science , vol.1 , Issue.1 , pp. 2463-2468
    • Dong, G.1    Lai, K.2    Yen, J.3
  • 22
    • 84977404808 scopus 로고    scopus 로고
    • Pitfalls in the application of discriminant analysis in business, finance, and economics
    • Eisenbeis, R. 1997. Pitfalls in the application of discriminant analysis in business, finance, and economics, Journal of Finance 32(3): 875-900. http://dx.doi.org/10.1111/j.1540-6261.1977.tb01995.x
    • (1997) Journal of Finance , vol.32 , Issue.3 , pp. 875-900
    • Eisenbeis, R.1
  • 24
    • 29144499905 scopus 로고    scopus 로고
    • Working set selection using second order information for training SVM
    • Fan, R.-E.; Chen, P.-H.; Lin, C.-J. 2005. Working set selection using second order information for training SVM, Journal of Machine Learning Research 6: 1889-1918.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1889-1918
    • Fan, R.-E.1    Chen, P.-H.2    Lin, C.-J.3
  • 25
    • 44849134420 scopus 로고    scopus 로고
    • Towards profitability: A utility approach to the credit scoring problem
    • Finlay, S. 2008. Towards profitability: a utility approach to the credit scoring problem, Journal of the Operational Research Society 59(7): 921-931. http://dx.doi.org/10.1057/palgrave.jors.2602394
    • (2008) Journal of the Operational Research Society , vol.59 , Issue.7 , pp. 921-931
    • Finlay, S.1
  • 26
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fisher, R. A. 1936. The use of multiple measurements in taxonomic problems, Annals of Eugenics 7(2): 179-188. http://dx.doi.org/10.1111/j.1469-1809.1936.tb02137.x
    • (1936) Annals of Eugenics , vol.7 , Issue.2 , pp. 179-188
    • Fisher, R.A.1
  • 28
    • 80052394779 scopus 로고    scopus 로고
    • On the effectiveness of preprocessing methods when dealing with different levels of class imbalance
    • Garcia, V.; Sanchez, J. S.; Mollineda, R. A. 2012. On the effectiveness of preprocessing methods when dealing with different levels of class imbalance, Knowledge-Based Systems 25(1):13-21.
    • (2012) Knowledge-Based Systems , vol.25 , Issue.1 , pp. 13-21
    • Garcia, V.1    Sanchez, J.S.2    Mollineda, R.A.3
  • 31
    • 84984253750 scopus 로고
    • Asymmetric information and models of credit rationing
    • Hillier, B.; Lbrahimo, M. 1993. Asymmetric information and models of credit rationing, Bulletin of Economic Research 45(4): 271-304. http://dx.doi.org/10.1111/j.1467-8586.1993.tb00571.x
    • (1993) Bulletin of Economic Research , vol.45 , Issue.4 , pp. 271-304
    • Hillier, B.1    Lbrahimo, M.2
  • 33
    • 60549114692 scopus 로고    scopus 로고
    • Integrating nonlinear graph based dimensionality reduction schemes with SVMs for credit rating forecasting
    • Huang, S. 2009. Integrating nonlinear graph based dimensionality reduction schemes with SVMs for credit rating forecasting, Expert Systems with Applications 36(4): 7515-7518. http://dx.doi.org/10.1016/j.eswa.2008.09.047
    • (2009) Expert Systems with Applications , vol.36 , Issue.4 , pp. 7515-7518
    • Huang, S.1
  • 34
    • 2442665617 scopus 로고    scopus 로고
    • Credit rating analysis with support vector machine and neural networks: A market comparative study
    • Huang, Z.; Chen, H.; Hsu, C.-J.; Chen, W.-H.; Wu, S. 2004. Credit rating analysis with support vector machine and neural networks: a market comparative study, Decision Support Systems 37(4): 543-558. http://dx.doi.org/10.1016/S0167-9236(03)00086-1
    • (2004) Decision Support Systems , vol.37 , Issue.4 , pp. 543-558
    • Huang, Z.1    Chen, H.2    Hsu, C.-J.3    Chen, W.-H.4    Wu, S.5
  • 35
    • 33745625856 scopus 로고    scopus 로고
    • An application of support vector machine to companies' financial distress prediction
    • Hui, X.; Sun, J. 2006. An application of support vector machine to companies' financial distress prediction, Lecture Notes in Computer Science 3885: 274-282. http://dx.doi.org/10.1007/11681960_27
    • (2006) Lecture Notes in Computer Science , vol.3885 , pp. 274-282
    • Hui, X.1    Sun, J.2
  • 37
    • 78649516309 scopus 로고    scopus 로고
    • Neural networks for credit risk evaluation: Investigation of different neural models and learning schemes
    • Khashman, A. 2010. Neural networks for credit risk evaluation: investigation of different neural models and learning schemes, Expert Systems with Applications 37: 6233-6239.
    • (2010) Expert Systems with Applications , vol.37 , pp. 6233-6239
    • Khashman, A.1
  • 38
    • 0001972236 scopus 로고    scopus 로고
    • Addressing the curse of imbalanced training sets: One-sided selection
    • 8-12 July 1997. San Francisco: Morgan Kaufmann
    • Kubat, M.; Matwin, S. 1997. Addressing the curse of imbalanced training sets: one-sided selection, in Proceedings of the 14th International Conference on Machine Learning, 8-12 July 1997. San Francisco: Morgan Kaufmann, 179-186.
    • (1997) Proceedings of the 14th International Conference on Machine Learning , pp. 179-186
    • Kubat, M.1    Matwin, S.2
  • 39
    • 34347219423 scopus 로고    scopus 로고
    • Building contextual classifiers by integrating fuzzy rule based classification technique and k-nn method for credit scoring
    • Laha, A. 2007. Building contextual classifiers by integrating fuzzy rule based classification technique and k-nn method for credit scoring, Advanced Engineering Informatics 21: 281-291.
    • (2007) Advanced Engineering Informatics , vol.21 , pp. 281-291
    • Laha, A.1
  • 41
    • 0005244103 scopus 로고    scopus 로고
    • Predicting a corporate credit analysis risk estimate by logistic and linear models
    • Laitinen, E. 1999. Predicting a corporate credit analysis risk estimate by logistic and linear models, International Review of Financial Analysis 8(2): 97-121. http://dx.doi.org/10.1016/S1057-5219(99)00012-5
    • (1999) International Review of Financial Analysis , vol.8 , Issue.2 , pp. 97-121
    • Laitinen, E.1
  • 42
    • 0000988422 scopus 로고
    • Branch-and-bound method: A survey
    • Lawler, E.; Wood, D. 1966. Branch-and-bound method: a survey, Operations Research 14(4): 699-719. http://dx.doi.org/10.1287/opre.14.4.699
    • (1966) Operations Research , vol.14 , Issue.4 , pp. 699-719
    • Lawler, E.1    Wood, D.2
  • 43
    • 78049527784 scopus 로고    scopus 로고
    • A weighted L(q) adaptive least squares support vector machine classifiers-robust and sparse approximation
    • Liu, J.; Li, J.; Xu, W. 2011. A weighted L(q) adaptive least squares support vector machine classifiers-robust and sparse approximation, Expert Systems with Applications 38(3): 2253-2259.
    • (2011) Expert Systems with Applications , vol.38 , Issue.3 , pp. 2253-2259
    • Liu, J.1    Li, J.2    Xu, W.3
  • 44
    • 33749561333 scopus 로고    scopus 로고
    • The model of credit risk assessment in commercial banks on support vector machine
    • Liu, Y.; Wu, C.; Wang, M.; Qiao, M. 2005. The model of credit risk assessment in commercial banks on support vector machine, Forecasting 1(24): 52-55.
    • (2005) Forecasting , vol.1 , Issue.24 , pp. 52-55
    • Liu, Y.1    Wu, C.2    Wang, M.3    Qiao, M.4
  • 45
    • 33845772427 scopus 로고    scopus 로고
    • Learning when data sets are imbalanced and when costs are unequal and unknown
    • 21-24 August 2003, Washington DC: AAAI Press
    • Maloof, M. 2003. Learning when data sets are imbalanced and when costs are unequal and unknown, in ICML-2003 Workshop on Learning from Imbalanced Data Sets II, 21-24 August 2003, Washington DC: AAAI Press, 1-8.
    • (2003) ICML-2003 Workshop on Learning from Imbalanced Data Sets II , pp. 1-8
    • Maloof, M.1
  • 46
    • 34447292534 scopus 로고    scopus 로고
    • Comprehensible credit scoring models using rule extraction from support vector machines
    • Martens, D.; Baesens, B.; Gestel, T.; Vanthienen, J. 2007. Comprehensible credit scoring models using rule extraction from support vector machines, European Journal of Operational Research 183(3): 1466-1476. http://dx.doi.org/10.1016/j.ejor.2006.04.051
    • (2007) European Journal of Operational Research , vol.183 , Issue.3 , pp. 1466-1476
    • Martens, D.1    Baesens, B.2    Gestel, T.3    Vanthienen, J.4
  • 50
    • 0000600340 scopus 로고
    • General intelligence, objectively determined and measured
    • Spearman, C. 1904. General intelligence, objectively determined and measured, The American Journal of Psychology 15(2): 201-292. http://dx.doi.org/10.2307/1412107
    • (1904) The American Journal of Psychology , vol.15 , Issue.2 , pp. 201-292
    • Spearman, C.1
  • 51
    • 0000342340 scopus 로고
    • Credit rationing in markets with imperfect information
    • Stiglitz, J.; Wesiss, A. 1981. Credit rationing in markets with imperfect information, American Economics Review 71(3): 393-410.
    • (1981) American Economics Review , vol.71 , Issue.3 , pp. 393-410
    • Stiglitz, J.1    Wesiss, A.2
  • 52
    • 78049527112 scopus 로고    scopus 로고
    • Dynamic financial distress prediction using instance selection for the disposal of concept drift
    • Sun, J.; Li, H. 2011. Dynamic financial distress prediction using instance selection for the disposal of concept drift, Expert Systems with Applications 38(3): 2566-2576. http://dx.doi.org/10.1016/j.eswa.2010.08.046
    • (2011) Expert Systems with Applications , vol.38 , Issue.3 , pp. 2566-2576
    • Sun, J.1    Li, H.2
  • 53
    • 59349101361 scopus 로고    scopus 로고
    • Feature selection in bankruptcy prediction
    • Tsai, C. 2009. Feature selection in bankruptcy prediction, Knowledge-Based Systems 22(2): 120-127. http://dx.doi.org/10.1016/j.knosys.2008.08.002
    • (2009) Knowledge-Based Systems , vol.22 , Issue.2 , pp. 120-127
    • Tsai, C.1
  • 54
    • 38649113538 scopus 로고    scopus 로고
    • Using neural network ensembles for bankruptcy prediction and credit scoring
    • Tsai, C.; Wu, J. 2008. Using neural network ensembles for bankruptcy prediction and credit scoring, Expert Systems with Applications 34(4): 2639-2649. http://dx.doi.org/10.1016/j.eswa.2007.05.019
    • (2008) Expert Systems with Applications , vol.34 , Issue.4 , pp. 2639-2649
    • Tsai, C.1    Wu, J.2
  • 55
    • 80053641608 scopus 로고    scopus 로고
    • An enforced support vector machine model for construction contractor default prediction
    • Tseng, H.; Lin, G.; Tsai, L. 2011. An enforced support vector machine model for construction contractor default prediction, Automation in Construction 20(8): 1242-1249. http://dx.doi.org/10.1016/j.autcon.2011.05.007
    • (2011) Automation in Construction , vol.20 , Issue.8 , pp. 1242-1249
    • Tseng, H.1    Lin, G.2    Tsai, L.3
  • 57
    • 77956619458 scopus 로고    scopus 로고
    • A comparative assessment of ensemble learning for credit scoring
    • Wang, G.; Hao, J.; Ma, J.; Jiang, H. 2011. A comparative assessment of ensemble learning for credit scoring, Expert Systems with Applications 38(1): 223-230. http://dx.doi.org/10.1016/j.eswa.2010.06.048
    • (2011) Expert Systems with Applications , vol.38 , Issue.1 , pp. 223-230
    • Wang, G.1    Hao, J.2    Ma, J.3    Jiang, H.4
  • 58
    • 13544268431 scopus 로고    scopus 로고
    • Neural network ensemble strategies for financial decision applications
    • West, D.; Dellana, S.; Qian, J. 2005. Neural network ensemble strategies for financial decision applications, Computers & Operations Research 32(10): 2543-2559. http://dx.doi.org/10.1016/j.cor.2004.03.017
    • (2005) Computers & Operations Research , vol.32 , Issue.10 , pp. 2543-2559
    • West, D.1    Dellana, S.2    Qian, J.3
  • 59
    • 46149128200 scopus 로고
    • Costly monitoring, financial intermediation, and equilibrium credit rationing
    • Williamson, S. 1986. Costly monitoring, financial intermediation, and equilibrium credit rationing, Journal of Monetary Economics 18(2): 159-179. http://dx.doi.org/10.1016/0304-3932(86)90074-7
    • (1986) Journal of Monetary Economics , vol.18 , Issue.2 , pp. 159-179
    • Williamson, S.1
  • 60
    • 79951624523 scopus 로고    scopus 로고
    • The model of credit risk assessment in commercial banks on fuzzy integral support vector machines ensemble
    • Wu, C.; Guo, Y.; Xia, H. 2009. The model of credit risk assessment in commercial banks on fuzzy integral support vector machines ensemble, Operations Research and Management Science 2(18): 115-119.
    • (2009) Operations Research and Management Science , vol.2 , Issue.18 , pp. 115-119
    • Wu, C.1    Guo, Y.2    Xia, H.3
  • 62
    • 79952186879 scopus 로고    scopus 로고
    • Financial distress prediction based on SVM and MDA methods: The case of Chinese listed companies
    • Xie, C.; Luo, C.; Yu, X. 2011. Financial distress prediction based on SVM and MDA methods: the case of Chinese listed companies, Quality & Quantity 45(3): 671-686. http://dx.doi.org/10.1007/s11135-010-9376-y
    • (2011) Quality & Quantity , vol.45 , Issue.3 , pp. 671-686
    • Xie, C.1    Luo, C.2    Yu, X.3
  • 63
    • 78650051796 scopus 로고    scopus 로고
    • The comparison of enterprise bankruptcy forecasting method
    • Xu, X.; Chen, Y.; Zheng, H. 2011. The comparison of enterprise bankruptcy forecasting method, Journal of Applied Statistics 38(2): 301-308. http://dx.doi.org/10.1080/02664760903406470
    • (2011) Journal of Applied Statistics , vol.38 , Issue.2 , pp. 301-308
    • Xu, X.1    Chen, Y.2    Zheng, H.3
  • 64
    • 0141453538 scopus 로고    scopus 로고
    • On predicting rare classes with SVM ensembles in scene classification
    • Speech and Signal Processing, 6-10 April 2003, Hong Kong
    • Yan, R.; Liu, Y.; Jin, R.; Alex, H. 2003. On predicting rare classes with SVM ensembles in scene classification, in IEEE International Conference on Acoustics, Speech and Signal Processing, 6-10 April 2003, Hong Kong, 21-24.
    • (2003) IEEE International Conference on Acoustics , pp. 21-24
    • Yan, R.1    Liu, Y.2    Jin, R.3    Alex, H.4
  • 65
    • 80052657691 scopus 로고    scopus 로고
    • A survey of imbalanced pattern classification problems
    • Yei, Z.; Wen, Y.; Lu, B. 2009. A survey of imbalanced pattern classification problems, CAAI Transactions on Intelligent Systems 4(2): 148-153.
    • (2009) CAAI Transactions on Intelligent Systems , vol.4 , Issue.2 , pp. 148-153
    • Yei, Z.1    Wen, Y.2    Lu, B.3
  • 66
    • 36148959733 scopus 로고    scopus 로고
    • Credit risk assessment with a multistage neural network ensemble learning approach
    • Yu, L.; Wang, S.; Lai, K. 2008. Credit risk assessment with a multistage neural network ensemble learning approach, Expert Systems with Applications 34(2): 1434-1444. http://dx.doi.org/10.1016/j.eswa.2007.01.009
    • (2008) Expert Systems with Applications , vol.34 , Issue.2 , pp. 1434-1444
    • Yu, L.1    Wang, S.2    Lai, K.3
  • 67
    • 56349095375 scopus 로고    scopus 로고
    • An intelligent-agent-based fuzzy group decision making model for financial multi-criteria decision support: The case of credit scoring
    • Yu, L.; Wang, S.; Lai, K. 2009. An intelligent-agent-based fuzzy group decision making model for financial multi-criteria decision support: the case of credit scoring, European Journal of Operational Research 195(3): 942-959. http://dx.doi.org/10.1016/j.ejor.2007.11.025
    • (2009) European Journal of Operational Research , vol.195 , Issue.3 , pp. 942-959
    • Yu, L.1    Wang, S.2    Lai, K.3
  • 68
    • 80052023180 scopus 로고    scopus 로고
    • Credit risk evaluation using a weighted least squares SVM classifier with design of experiment for parameter selection
    • Yu, L.; Yao, X.; Wang, S.; Lai, K. K. 2011. Credit risk evaluation using a weighted least squares SVM classifier with design of experiment for parameter selection, Expert Systems with Applications 38(12): 15392-15399. http://dx.doi.org/10.1016/j.eswa.2011.06.023
    • (2011) Expert Systems with Applications , vol.38 , Issue.12 , pp. 15392-15399
    • Yu, L.1    Yao, X.2    Wang, S.3    Lai, K.K.4
  • 69
    • 71749114830 scopus 로고    scopus 로고
    • Support vector machine based multi-agent ensemble learning for credit risk evaluation
    • Yu, L.; Yue, W.; Wang, S.; Lai, K. 2010. Support vector machine based multi-agent ensemble learning for credit risk evaluation, Expert Systems with Applications 37: 1351-1360.
    • (2010) Expert Systems with Applications , vol.37 , pp. 1351-1360
    • Yu, L.1    Yue, W.2    Wang, S.3    Lai, K.4
  • 70
    • 70349437327 scopus 로고    scopus 로고
    • Least squares support vector machines ensemble models for credit scoring
    • Zhou, L.; Lai, K.; Yu, L. 2010a. Least squares support vector machines ensemble models for credit scoring, Expert Systems with Applications 37(1): 127-133. http://dx.doi.org/10.1016/j.eswa.2009.05.024
    • (2010) Expert Systems with Applications , vol.37 , Issue.1 , pp. 127-133
    • Zhou, L.1    Lai, K.2    Yu, L.3
  • 71
    • 78650265148 scopus 로고    scopus 로고
    • Credit risk evaluation by using nearest subspace method
    • Zhou, X.; Jiang, W.; Shi, Y. 2010b. Credit risk evaluation by using nearest subspace method, Procedia Computer Science 1(1): 2449-2455. http://dx.doi.org/10.1016/j.procs.2010.04.276
    • (2010) Procedia Computer Science , vol.1 , Issue.1 , pp. 2449-2455
    • Zhou, X.1    Jiang, W.2    Shi, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.