메뉴 건너뛰기




Volumn 65, Issue 7, 2015, Pages 800-809

Improving artificial neural network model predictions of daily average PM10 concentrations by applying principle component analysis and implementing seasonal models

Author keywords

[No Author keywords available]

Indexed keywords

BACKPROPAGATION; FORECASTING; NEURAL NETWORKS;

EID: 84944029643     PISSN: 10962247     EISSN: 21622906     Source Type: Journal    
DOI: 10.1080/10962247.2015.1019652     Document Type: Article
Times cited : (37)

References (31)
  • 3
    • 0033755706 scopus 로고    scopus 로고
    • Association between particulate- and gas-phase components of urban air pollution and daily mortality in eight Canadian cities
    • Burnett, R.T., J. Brook, T. Dann, C. Delocla, O. Philips, S. Cakmak, R. Vincent, M.S. Goldberg, and D. Krewski. 2000. Association between particulate- and gas-phase components of urban air pollution and daily mortality in eight Canadian cities. Inhal. Toxicol. 12:15-39. doi:10.1080/ 089583700750019495
    • (2000) Inhal. Toxicol , vol.12 , pp. 15-39
    • Burnett, R.T.1    Brook, J.2    Dann, T.3    Delocla, C.4    Philips, O.5    Cakmak, S.6    Vincent, R.7    Goldberg, M.S.8    Krewski, D.9
  • 4
    • 84877352016 scopus 로고    scopus 로고
    • 10 concentration forecast model based on stepwise regression and wavelet analysis
    • 10 concentration forecast model based on stepwise regression and wavelet analysis. Atmos. Environ. 74:346-359. doi:10.1016/j.atmosenv.2013.04.002
    • (2013) Atmos. Environ , vol.74 , pp. 346-359
    • Chen, Y.1    Shi, R.2    Shu, S.3    Gao, W.4
  • 6
    • 63849254696 scopus 로고    scopus 로고
    • FANN. (accessed July 14, 2014)
    • FANN. 2014. Fast Artificial Neural Network library. http://leenissen.dk/fann/ wp (accessed July 14, 2014).
    • (2014) Fast Artificial Neural Network library
  • 9
    • 0018655718 scopus 로고
    • Multivariate analysis of particulate sulfate and other air quality variables by principal components-Part I. Annual data from Los Angeles and New York
    • Henry, R.C., and G.M. Hidy. 1979. Multivariate analysis of particulate sulfate and other air quality variables by principal components-Part I. Annual data from Los Angeles and New York. Atmos. Environ. 13:1581-1596. doi:10.1016/0004-6981(79)90068-4
    • (1979) Atmos. Environ , vol.13 , pp. 1581-1596
    • Henry, R.C.1    Hidy, G.M.2
  • 10
    • 0024880831 scopus 로고
    • Multilayer feed forward networks are universal approximators
    • Hornik, K., M. Stinchcombe, and H. White. 1989. Multilayer feed forward networks are universal approximators. Neural Netw. 2:359-366. doi:10.1016/0893-6080(89)90020-8
    • (1989) Neural Netw , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 11
    • 41749119166 scopus 로고    scopus 로고
    • Investigating the impacts of some meteorological parameters on air pollution in Balikesir, Turkey
    • Ilten, N., and A.T. Selici. 2008. Investigating the impacts of some meteorological parameters on air pollution in Balikesir, Turkey. Environ. Monit. Assess. 140:267-277. doi:10.1007/s10661-007-9865-1
    • (2008) Environ. Monit. Assess , vol.140 , pp. 267-277
    • Ilten, N.1    Selici, A.T.2
  • 13
    • 38649087934 scopus 로고    scopus 로고
    • Human health effects of air pollution
    • Kampa, M., and E. Castanas. 2008. Human health effects of air pollution. Environ. Pollut. 151:362-367. doi:10.1016/j.envpol.2007.06.012
    • (2008) Environ. Pollut , vol.151 , pp. 362-367
    • Kampa, M.1    Castanas, E.2
  • 14
    • 0029278204 scopus 로고
    • Optimal design of neural networks using the Taguchi method
    • Khaw, J.F.C., B.S. Lim, L.E.N. Lim. 1995. Optimal design of neural networks using the Taguchi method. Neurocomputing 7:225-245. doi:10.1016/ 0925-2312(94)00013-I
    • (1995) Neurocomputing , vol.7 , pp. 225-245
    • Khaw, J.F.C.1    Lim, B.S.2    Lim, L.E.N.3
  • 15
    • 2942622491 scopus 로고    scopus 로고
    • Robust design of multilayer feed-forward neural networks: An experimental approach
    • Kim, Y.S., and B.J. Yum. 2004. Robust design of multilayer feed-forward neural networks: An experimental approach. Eng. Appl. Artif. Intell. 17:249-263. doi:10.1016/j.engappai.2003.12.005
    • (2004) Eng. Appl. Artif. Intell , vol.17 , pp. 249-263
    • Kim, Y.S.1    Yum, B.J.2
  • 16
    • 84855283390 scopus 로고    scopus 로고
    • A comparison for Turkish provinces' performance of urban air pollution
    • Köne, A.C., and T. Büke. 2012. A comparison for Turkish provinces' performance of urban air pollution. Renew. Sustain. Energy Rev. 16:1300-1310. doi:10.1016/j.rser.2011.10.006
    • (2012) Renew. Sustain. Energy Rev , vol.16 , pp. 1300-1310
    • Köne, A.C.1    Büke, T.2
  • 17
    • 77957840490 scopus 로고    scopus 로고
    • Forecasting air pollutant indicator levels with geographic models 3 days in advance using neural networks
    • Kurt, A., and A.B. Oktay. 2010. Forecasting air pollutant indicator levels with geographic models 3 days in advance using neural networks. Expert Syst. Appl. 37:7986-7992. doi:10.1016/j.eswa.2010.05.093
    • (2010) Expert Syst. Appl , vol.37 , pp. 7986-7992
    • Kurt, A.1    Oktay, A.B.2
  • 18
    • 0036136633 scopus 로고    scopus 로고
    • 10 concentration in Taiwan area
    • 10 concentration in Taiwan area. Atmos. Environ. 36:491-502. doi:10.1016/S1352-2310(01)00245-X
    • (2002) Atmos. Environ , vol.36 , pp. 491-502
    • Lu, H.C.1
  • 19
    • 84859515843 scopus 로고    scopus 로고
    • Optimal selection of ANN training and architectural parameters using Taguchi method: A case study
    • Madic, M.J., and M.R. Radovanovic. 2011. Optimal selection of ANN training and architectural parameters using Taguchi method: A case study. FME Trans. 39:79-86.
    • (2011) FME Trans , vol.39 , pp. 79-86
    • Madic, M.J.1    Radovanovic, M.R.2
  • 20
    • 15544386955 scopus 로고    scopus 로고
    • 10 concentrations-a study in Macau
    • 10 concentrations-a study in Macau. Environ. Monit. Assess. 102:201-223. doi:10.1007/s10661-005-6022-6
    • (2005) Environ. Monit. Assess , vol.102 , pp. 201-223
    • Mok, K.M.1    Hoi, K.I.2
  • 24
    • 0036708755 scopus 로고    scopus 로고
    • 10 concentrations 30-h in advance in Santiago, Chile
    • 10 concentrations 30-h in advance in Santiago, Chile. Atmos. Environ. 36:4555-4561. doi:10.1016/S1352-2310(02)00419-3
    • (2002) Atmos. Environ , vol.36 , pp. 4555-4561
    • Perez, P.1    Reyes, J.2
  • 25
    • 0036131691 scopus 로고    scopus 로고
    • The influence of meteorological conditions on the behavior of pollutants concentrations in Sao Paulo, Brazil
    • Sanchez-Ccoyllo, O.R., and F.M. Andrade. 2002. The influence of meteorological conditions on the behavior of pollutants concentrations in Sao Paulo, Brazil. Environ. Pollut. 116:257-263. doi:10.1016/S0269-7491(01)00129-4
    • (2002) Environ. Pollut , vol.116 , pp. 257-263
    • Sanchez-Ccoyllo, O.R.1    Andrade, F.M.2
  • 26
    • 84879735938 scopus 로고    scopus 로고
    • 10 concentrations prediction by combining regression models and feedforward backpropagation models with principle component analysis (PCA)
    • 10 concentrations prediction by combining regression models and feedforward backpropagation models with principle component analysis (PCA). Atmos. Environ. 77:621-630.
    • (2013) Atmos. Environ , vol.77 , pp. 621-630
    • Saufie, A.Z.1    Yahaya, A.S.2    Ramli, N.A.3    Rosaida, N.4    Hamid, H.A.5
  • 27
    • 77954659896 scopus 로고    scopus 로고
    • 10: Application in the Greater Athens Area, Greece
    • 10: Application in the Greater Athens Area, Greece. Atmos. Environ. 44:3159-3172. doi:10.1016/j. atmosenv.2010.05.028
    • (2010) Atmos. Environ , vol.44 , pp. 3159-3172
    • Sfetsos, A.1    Vlachogiannis, D.2
  • 28
    • 0032029868 scopus 로고    scopus 로고
    • Principal component and canonical correlation analysis for examining air pollution and meteorological data
    • Statheropoulos, M., N. Vassiliadis, and A. Pappa. 1998. Principal component and canonical correlation analysis for examining air pollution and meteorological data. Atmos. Environ. 32:1087-1095. doi:10.1016/S1352-2310(97) 00377-4
    • (1998) Atmos. Environ , vol.32 , pp. 1087-1095
    • Statheropoulos, M.1    Vassiliadis, N.2    Pappa, A.3
  • 29
    • 79959515803 scopus 로고    scopus 로고
    • A source apportionment of U.S. fine particulate matter air pollution
    • Thurston, G.D., K. Ito, and R. Lall. 2011. A source apportionment of U.S. fine particulate matter air pollution. Atmos. Environ. 45:3924-3936. doi:10.1016/j.atmosenv.2011.04.070
    • (2011) Atmos. Environ , vol.45 , pp. 3924-3936
    • Thurston, G.D.1    Ito, K.2    Lall, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.