메뉴 건너뛰기




Volumn 320, Issue , 2016, Pages 62-70

Transferability of species distribution models: The case of Phytophthora cinnamomi in Southwest Spain and Southwest Australia

Author keywords

General Linear Models (GLM); Mahalanobis distance; Maximum entropy models (MaxEnt); Model transferability; Phytophthora cinnamomi; Species distribution models

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; CALIBRATION; LEARNING SYSTEMS; PLANTS (BOTANY); PROBABILITY DISTRIBUTIONS; REGRESSION ANALYSIS;

EID: 84943642897     PISSN: 03043800     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ecolmodel.2015.09.019     Document Type: Article
Times cited : (140)

References (62)
  • 1
    • 84943597304 scopus 로고    scopus 로고
    • The 2011 Australian national map layers, Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES), Geoscience Australia, CSIRO Land and Water, the Department of Sustainability, Environment, Water, Population and Communities (Environmental Resources Information Network), the Australian Bureau of Statistics, and the National Centre for Social Applications of Geographic Informat
    • Retrieved 15 October, 2012, from
    • ABARES The 2011 Australian national map layers, Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES), Geoscience Australia, CSIRO Land and Water, the Department of Sustainability, Environment, Water, Population and Communities (Environmental Resources Information Network), the Australian Bureau of Statistics, and the National Centre for Social Applications of Geographic Information Systems ed. Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES) 2011, Retrieved 15 October, 2012, from 〈www.daff.gov.au/abares/mcass〉.
    • (2011)
  • 2
    • 33750525529 scopus 로고    scopus 로고
    • Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS)
    • Allouche O., Tsoar A., Kadmon R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 2006, 43:1223-1232.
    • (2006) J. Appl. Ecol. , vol.43 , pp. 1223-1232
    • Allouche, O.1    Tsoar, A.2    Kadmon, R.3
  • 3
    • 79959735518 scopus 로고    scopus 로고
    • Species-specific tuning increases robustness to sampling bias in models of species distributions: an implementation with Maxent
    • Anderson R.P., Gonzalez I. Species-specific tuning increases robustness to sampling bias in models of species distributions: an implementation with Maxent. Ecol. Modell. 2011, 222:2796-2811.
    • (2011) Ecol. Modell. , vol.222 , pp. 2796-2811
    • Anderson, R.P.1    Gonzalez, I.2
  • 4
    • 0030429392 scopus 로고    scopus 로고
    • Phytophthora cinnamomi and oak decline in southern Europe. Environmental constraints including climate change
    • Brasier C.M. Phytophthora cinnamomi and oak decline in southern Europe. Environmental constraints including climate change. Ann. Sci. Forest. 1996, 53:347-358.
    • (1996) Ann. Sci. Forest. , vol.53 , pp. 347-358
    • Brasier, C.M.1
  • 5
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach. Learn. 2001, 45:5-32.
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 7
    • 85031874874 scopus 로고
    • Etiología, importancia y distribución de la seca del garbanzo en el Valle del Guadalquivir
    • Casas A.T., Díaz R.M.J. Etiología, importancia y distribución de la seca del garbanzo en el Valle del Guadalquivir. Boletín de Sanidad Vegetal-Plagas 1985, 11:69-145.
    • (1985) Boletín de Sanidad Vegetal-Plagas , vol.11 , pp. 69-145
    • Casas, A.T.1    Díaz, R.M.J.2
  • 8
    • 84973587732 scopus 로고
    • A Coefficient of agreement for nominal scales
    • Cohen J. A Coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20:37-46.
    • (1960) Educ. Psychol. Meas. , vol.20 , pp. 37-46
    • Cohen, J.1
  • 10
    • 33750012330 scopus 로고    scopus 로고
    • Effects of sample survey design on the accuracy of classification tree models in species distribution models
    • Edwards T.C., Cutler D.R., Zimmermann N.E., Geiser L., Moisen G.G. Effects of sample survey design on the accuracy of classification tree models in species distribution models. Ecol. Modell. 2006, 199:132-141.
    • (2006) Ecol. Modell. , vol.199 , pp. 132-141
    • Edwards, T.C.1    Cutler, D.R.2    Zimmermann, N.E.3    Geiser, L.4    Moisen, G.G.5
  • 12
    • 73949141293 scopus 로고    scopus 로고
    • Species distribution models: ecological explanation and prediction across space and time
    • Elith J., Leathwick J.R. Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Syst. Evol. Syst. 2009, 40:677-697.
    • (2009) Annu. Rev. Ecol. Syst. Evol. Syst. , vol.40 , pp. 677-697
    • Elith, J.1    Leathwick, J.R.2
  • 13
    • 44849118698 scopus 로고    scopus 로고
    • A working guide to boosted regression trees
    • Elith J., Leathwick J.R., Hastie T. A working guide to boosted regression trees. J. Anim. Ecol. 2008, 77:802-813.
    • (2008) J. Anim. Ecol. , vol.77 , pp. 802-813
    • Elith, J.1    Leathwick, J.R.2    Hastie, T.3
  • 14
    • 0037301478 scopus 로고    scopus 로고
    • Assessment of alternative approaches for bioclimatic modeling with special emphasis on the Mahalanobis distance
    • Farber O., Kadmon R. Assessment of alternative approaches for bioclimatic modeling with special emphasis on the Mahalanobis distance. Ecol. Modell. 2003, 160:115-130.
    • (2003) Ecol. Modell. , vol.160 , pp. 115-130
    • Farber, O.1    Kadmon, R.2
  • 17
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • Friedman J.H. Multivariate adaptive regression splines. Ann. Stat. 1991, 19:1-67.
    • (1991) Ann. Stat. , vol.19 , pp. 1-67
    • Friedman, J.H.1
  • 19
    • 0037202446 scopus 로고    scopus 로고
    • Generalized linear and generalized additive models in studies of species distributions: setting the scene
    • Guisan A., Edwards T.C., Hastie T. Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecol. Modell. 2002, 157:89-100.
    • (2002) Ecol. Modell. , vol.157 , pp. 89-100
    • Guisan, A.1    Edwards, T.C.2    Hastie, T.3
  • 20
    • 24344493920 scopus 로고    scopus 로고
    • Predicting species distribution: offering more than simple habitat models
    • Guisan A., Thuiller W. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 2005, 8:993-1009.
    • (2005) Ecol. Lett. , vol.8 , pp. 993-1009
    • Guisan, A.1    Thuiller, W.2
  • 21
    • 84855492766 scopus 로고    scopus 로고
    • Sample sizes and model comparison metrics for species distribution models
    • Hanberry B.B., He H.S., Dey D.C. Sample sizes and model comparison metrics for species distribution models. Ecol. Modell. 2012, 227:29-33.
    • (2012) Ecol. Modell. , vol.227 , pp. 29-33
    • Hanberry, B.B.1    He, H.S.2    Dey, D.C.3
  • 22
    • 33748924018 scopus 로고    scopus 로고
    • Phytophthora cinnamomi
    • Hardham A.R. Phytophthora cinnamomi. Mol. Plant Pathol. 2005, 6:589-604.
    • (2005) Mol. Plant Pathol. , vol.6 , pp. 589-604
    • Hardham, A.R.1
  • 23
    • 84857796019 scopus 로고    scopus 로고
    • Does the interpolation accuracy of species distribution models come at the expense of transferability?
    • Heikkinen R.K., Marmion M., Luoto M. Does the interpolation accuracy of species distribution models come at the expense of transferability?. Ecography 2012, 35:276-288.
    • (2012) Ecography , vol.35 , pp. 276-288
    • Heikkinen, R.K.1    Marmion, M.2    Luoto, M.3
  • 24
    • 0024937968 scopus 로고
    • Spatial pattern and ecological analysis
    • Legendre P., Fortin M.J. Spatial pattern and ecological analysis. Vegetatio 1989, 80:107-138.
    • (1989) Vegetatio , vol.80 , pp. 107-138
    • Legendre, P.1    Fortin, M.J.2
  • 25
    • 0344604541 scopus 로고    scopus 로고
    • Artificial neural networks as a tool in ecological modelling, an introduction
    • Lek S., Guegan J.F. Artificial neural networks as a tool in ecological modelling, an introduction. Ecol. Modell. 1999, 120:65-73.
    • (1999) Ecol. Modell. , vol.120 , pp. 65-73
    • Lek, S.1    Guegan, J.F.2
  • 26
    • 38949161848 scopus 로고    scopus 로고
    • AUC: a misleading measure of the performance of predictive distribution models
    • Lobo J.M., Jiménez-Valverde A., Real R. AUC: a misleading measure of the performance of predictive distribution models. Global Ecol. Biogeogr. 2008, 17:145-151.
    • (2008) Global Ecol. Biogeogr. , vol.17 , pp. 145-151
    • Lobo, J.M.1    Jiménez-Valverde, A.2    Real, R.3
  • 27
    • 77953929268 scopus 로고    scopus 로고
    • The uncertain nature of absences and their importance in species distribution modelling
    • Lobo J.M., Jiménez-Valverde A., Hortal J. The uncertain nature of absences and their importance in species distribution modelling. Ecography 2010, 33:103-114.
    • (2010) Ecography , vol.33 , pp. 103-114
    • Lobo, J.M.1    Jiménez-Valverde, A.2    Hortal, J.3
  • 29
    • 82755190276 scopus 로고    scopus 로고
    • Ministerio de Medio Ambiente, Gobierno de España, Madrid
    • MAGRAMA Tercer Inventario Forestal Nacional (IFN3) 2007, Ministerio de Medio Ambiente, Gobierno de España, Madrid.
    • (2007) Tercer Inventario Forestal Nacional (IFN3)
  • 31
    • 84934968239 scopus 로고    scopus 로고
    • Impact of model complexity on cross-temporal transferability in Maxent species distribution models: An assessment using paleobotanical data
    • Moreno-Amat E., Mateo R.G., Nieto-Lugilde D., Morueta-Holme N., Svenning J.-C., García-Amorena I. Impact of model complexity on cross-temporal transferability in Maxent species distribution models: An assessment using paleobotanical data. Ecol. Modell. 2015, 312:308-317.
    • (2015) Ecol. Modell. , vol.312 , pp. 308-317
    • Moreno-Amat, E.1    Mateo, R.G.2    Nieto-Lugilde, D.3    Morueta-Holme, N.4    Svenning, J.-C.5    García-Amorena, I.6
  • 35
    • 27944446350 scopus 로고    scopus 로고
    • Maximum entropy modeling of species geographic distributions
    • Phillips S.J., Anderson R.P., Schapire R.E. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 2006, 190:231-259.
    • (2006) Ecol. Modell. , vol.190 , pp. 231-259
    • Phillips, S.J.1    Anderson, R.P.2    Schapire, R.E.3
  • 36
    • 33645330972 scopus 로고    scopus 로고
    • Newer classification and regression tree techniques: bagging and random forests for ecological prediction
    • Prasad A., Iverson L., Liaw A. Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems 2006, 9:181-199.
    • (2006) Ecosystems , vol.9 , pp. 181-199
    • Prasad, A.1    Iverson, L.2    Liaw, A.3
  • 40
    • 34249083489 scopus 로고    scopus 로고
    • Phytophthora cinnamomi invasion, a major threatening process to conservation of flora diversity in the South-west Botanical Province of Western Australia
    • Shearer B.L., Crane C.E., Barrett S., Cochrane A. Phytophthora cinnamomi invasion, a major threatening process to conservation of flora diversity in the South-west Botanical Province of Western Australia. Aust. J. Bot. 2007, 55:225-238.
    • (2007) Aust. J. Bot. , vol.55 , pp. 225-238
    • Shearer, B.L.1    Crane, C.E.2    Barrett, S.3    Cochrane, A.4
  • 42
    • 72049101205 scopus 로고    scopus 로고
    • Differences in spatial predictions among species distribution modeling methods vary with species traits and environmental predictors
    • Syphard A.D., Franklin J. Differences in spatial predictions among species distribution modeling methods vary with species traits and environmental predictors. Ecography 2009, 32:907-918.
    • (2009) Ecography , vol.32 , pp. 907-918
    • Syphard, A.D.1    Franklin, J.2
  • 43
    • 0242275331 scopus 로고    scopus 로고
    • BIOMOD-optimizing predictions of species distributions and projecting potential future shifts under global change
    • Thuiller W. BIOMOD-optimizing predictions of species distributions and projecting potential future shifts under global change. Global Change Biol. 2003, 9:1353-1362.
    • (2003) Global Change Biol. , vol.9 , pp. 1353-1362
    • Thuiller, W.1
  • 45
    • 64649098806 scopus 로고    scopus 로고
    • BIOMOD-a platform for ensemble forecasting of species distributions
    • Thuiller W., Lafourcade B., Engler R., Araujo M.B. BIOMOD-a platform for ensemble forecasting of species distributions. Ecography 2009, 32:369-373.
    • (2009) Ecography , vol.32 , pp. 369-373
    • Thuiller, W.1    Lafourcade, B.2    Engler, R.3    Araujo, M.B.4
  • 47
    • 0000565591 scopus 로고
    • A computer movie simulating urban growth in the Detroit region
    • Tobler W.R. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 1970, 46:234-240.
    • (1970) Econ. Geogr. , vol.46 , pp. 234-240
    • Tobler, W.R.1
  • 48
    • 84948746712 scopus 로고
    • Flexible discriminant analysis by optimal scoring
    • Trevor H., Robert T., Andreas B. Flexible discriminant analysis by optimal scoring. J. Am. Stat. Assoc. 1994, 89:1255-1270.
    • (1994) J. Am. Stat. Assoc. , vol.89 , pp. 1255-1270
    • Trevor, H.1    Robert, T.2    Andreas, B.3
  • 49
    • 77955509717 scopus 로고    scopus 로고
    • Predicting potential and actual distribution of sudden oak death in Oregon: prioritizing landscape contexts for early detection and eradication of disease outbreaks
    • Václavík T., Kanaskie A., Hansen E.M., Ohmann J.L., Meentemeyer R.K. Predicting potential and actual distribution of sudden oak death in Oregon: prioritizing landscape contexts for early detection and eradication of disease outbreaks. For. Ecol. Manage. 2010, 260:1026-1035.
    • (2010) For. Ecol. Manage. , vol.260 , pp. 1026-1035
    • Václavík, T.1    Kanaskie, A.2    Hansen, E.M.3    Ohmann, J.L.4    Meentemeyer, R.K.5
  • 50
    • 70350453943 scopus 로고    scopus 로고
    • Invasive species distribution modeling (iSDM): are absence data and dispersal constraints needed to predict actual distributions?
    • Václavík T., Meentemeyer R.K. Invasive species distribution modeling (iSDM): are absence data and dispersal constraints needed to predict actual distributions?. Ecol. Modell. 2009, 220:3248-3258.
    • (2009) Ecol. Modell. , vol.220 , pp. 3248-3258
    • Václavík, T.1    Meentemeyer, R.K.2
  • 51
    • 65249098350 scopus 로고    scopus 로고
    • Forecasting the pattern and pace of Fagus forest expansion in Majella National Park, Italy
    • van Gils H., Batsukh O., Rossiter D., Munthali W., Liberatoscioli E. Forecasting the pattern and pace of Fagus forest expansion in Majella National Park, Italy. Appl. Veg. Sci. 2008, 11:539-546.
    • (2008) Appl. Veg. Sci. , vol.11 , pp. 539-546
    • van Gils, H.1    Batsukh, O.2    Rossiter, D.3    Munthali, W.4    Liberatoscioli, E.5
  • 52
    • 84868276796 scopus 로고    scopus 로고
    • Fine resolution distribution modelling of endemics in Majella National Park, Central Italy
    • van Gils H., Conti F., Ciaschetti G., Westinga E. Fine resolution distribution modelling of endemics in Majella National Park, Central Italy. Plant Biosyst. 2012, 146:276-287.
    • (2012) Plant Biosyst. , vol.146 , pp. 276-287
    • van Gils, H.1    Conti, F.2    Ciaschetti, G.3    Westinga, E.4
  • 54
    • 0034503178 scopus 로고    scopus 로고
    • Classification trees: an alternative non-parametric approach for predicting species distributions
    • Vayssieres M.P., Plant R.E., Allen-Diaz B.H. Classification trees: an alternative non-parametric approach for predicting species distributions. J. Veg. Sci. 2000, 11:679-694.
    • (2000) J. Veg. Sci. , vol.11 , pp. 679-694
    • Vayssieres, M.P.1    Plant, R.E.2    Allen-Diaz, B.H.3
  • 55
    • 70449732203 scopus 로고    scopus 로고
    • Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models
    • Veloz S.D. Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models. J. Biogeogr. 2009, 36:2290-2299.
    • (2009) J. Biogeogr. , vol.36 , pp. 2290-2299
    • Veloz, S.D.1
  • 56
    • 84879517711 scopus 로고    scopus 로고
    • Improving transferability of introduced species' distribution models: new tools to forecast the spread of a highly invasive seaweed
    • Verbruggen H., Tyberghein L., Belton G.S., Mineur F., Jueterbock A., Hoarau G., Gurgel C.F.D., De Clerck O. Improving transferability of introduced species' distribution models: new tools to forecast the spread of a highly invasive seaweed. PLoS ONE 2013, 8:e68337.
    • (2013) PLoS ONE , vol.8 , pp. e68337
    • Verbruggen, H.1    Tyberghein, L.2    Belton, G.S.3    Mineur, F.4    Jueterbock, A.5    Hoarau, G.6    Gurgel, C.F.D.7    De Clerck, O.8
  • 57
    • 84867394789 scopus 로고    scopus 로고
    • Assessing transferability of ecological models: an underappreciated aspect of statistical validation
    • Wenger S.J., Olden J.D. Assessing transferability of ecological models: an underappreciated aspect of statistical validation. Methods Ecol. Evol. 2012, 3:260-267.
    • (2012) Methods Ecol. Evol. , vol.3 , pp. 260-267
    • Wenger, S.J.1    Olden, J.D.2
  • 59
    • 0001617437 scopus 로고
    • The biology of Phytophthora cinnamomi in Australasian forests
    • Weste G., Marks G.C. The biology of Phytophthora cinnamomi in Australasian forests. Annu. Rev. Phytopathol. 1987, 25:207-229.
    • (1987) Annu. Rev. Phytopathol. , vol.25 , pp. 207-229
    • Weste, G.1    Marks, G.C.2
  • 61
    • 84924943619 scopus 로고    scopus 로고
    • Multi-scale comparison of topographic complexity indices in relation to plant species richness
    • Yu F., Wang T., Groen T.A., Skidmore A.K., Yang X., Geng Y., Ma K. Multi-scale comparison of topographic complexity indices in relation to plant species richness. Ecol. Complexity 2015, 22:93-101.
    • (2015) Ecol. Complexity , vol.22 , pp. 93-101
    • Yu, F.1    Wang, T.2    Groen, T.A.3    Skidmore, A.K.4    Yang, X.5    Geng, Y.6    Ma, K.7
  • 62
    • 0008619730 scopus 로고
    • Origin and distribution of four species of Phytophthora
    • Zentmyer G.A. Origin and distribution of four species of Phytophthora. Trans. Br. Mycol. Soc. 1988, 91:367-378.
    • (1988) Trans. Br. Mycol. Soc. , vol.91 , pp. 367-378
    • Zentmyer, G.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.