|
Volumn 1993-January, Issue , 1993, Pages 836-842
|
Global descent replaces gradient descent to avoid local minima problem in learning with artificial neural networks
|
Author keywords
[No Author keywords available]
|
Indexed keywords
BACKPROPAGATION;
BACKPROPAGATION ALGORITHMS;
DYNAMICAL SYSTEMS;
GLOBAL OPTIMIZATION;
NEURAL NETWORKS;
OPTIMIZATION;
PATTERN RECOGNITION;
PATTERN RECOGNITION SYSTEMS;
BACKPROPAGATION LEARNING ALGORITHM;
DETERMINISTIC DYNAMICAL SYSTEMS;
FUNDAMENTAL LIMITATIONS;
GRADIENT DESCENT;
LOCAL MINIMA PROBLEMS;
LOCAL MINIMUMS;
NEW APPROACHES;
SPECIFIC PROBLEMS;
LEARNING ALGORITHMS;
|
EID: 84943257899
PISSN: 10987576
EISSN: None
Source Type: Conference Proceeding
DOI: 10.1109/ICNN.1993.298667 Document Type: Conference Paper |
Times cited : (43)
|
References (0)
|