메뉴 건너뛰기




Volumn 39, Issue 13, 2015, Pages 1778-1789

Thermodynamic and environmental impact assessment of steam methane reforming and magnesium-chlorine cycle-based multigeneration systems

Author keywords

Absorption cooling; Environmental impact assessment; Exergy analysis; Magnesium chlorine; Renewable energy; Steam methane reforming; System integration

Indexed keywords

ABSORPTION COOLING; CHEMICAL STABILITY; CHLORINE; CHLORINE COMPOUNDS; ENVIRONMENTAL IMPACT ASSESSMENTS; EXERGY; FOSSIL FUELS; GAS EMISSIONS; GREENHOUSE GASES; HYDROGEN FUELS; HYDROGEN PRODUCTION; INTEGRATED CONTROL; LITHIUM COMPOUNDS; MAGNESIUM; MAGNESIUM COMPOUNDS; METHANE; SOLAR POWER GENERATION; SPACE POWER GENERATION; STEAM; STEAM REFORMING; SUSTAINABLE DEVELOPMENT; THERMOANALYSIS; WATER ABSORPTION;

EID: 84942985606     PISSN: 0363907X     EISSN: 1099114X     Source Type: Journal    
DOI: 10.1002/er.3317     Document Type: Article
Times cited : (15)

References (28)
  • 2
    • 78751544076 scopus 로고    scopus 로고
    • Potential thermochemical and hybrid cycles for nuclear-based hydrogen production
    • Dincer I, Tolga MT. Potential thermochemical and hybrid cycles for nuclear-based hydrogen production. International Journal of Energy Research 2011; 35:123-137.
    • (2011) International Journal of Energy Research , vol.35 , pp. 123-137
    • Dincer, I.1    Tolga, M.T.2
  • 3
    • 84870063177 scopus 로고    scopus 로고
    • Investigation of an integrated hydrogen production system based on nuclear and renewable energy sources:a new approach for sustainable hydrogen production via copper-chlorine thermochemical cycles
    • Orhan MF, Dincer I, Rosen MA. Investigation of an integrated hydrogen production system based on nuclear and renewable energy sources:a new approach for sustainable hydrogen production via copper-chlorine thermochemical cycles. International Journal of Energy Research 2012; 36:1388-1394.
    • (2012) International Journal of Energy Research , vol.36 , pp. 1388-1394
    • Orhan, M.F.1    Dincer, I.2    Rosen, M.A.3
  • 6
    • 0025889205 scopus 로고
    • Thermodynamic investigation of hydrogen production by steam-methane reforming
    • Rosen MA. Thermodynamic investigation of hydrogen production by steam-methane reforming. International Journal of Hydrogen Energy 1991; 16:207-217.
    • (1991) International Journal of Hydrogen Energy , vol.16 , pp. 207-217
    • Rosen, M.A.1
  • 7
    • 36549019525 scopus 로고    scopus 로고
    • Exergy analysis of hydrogen production via steam methane reforming
    • Simpson AP, Lutz AE. Exergy analysis of hydrogen production via steam methane reforming. International Journal of Hydrogen Energy 2007; 32:4811-4820.
    • (2007) International Journal of Hydrogen Energy , vol.32 , pp. 4811-4820
    • Simpson, A.P.1    Lutz, A.E.2
  • 8
    • 79952814907 scopus 로고    scopus 로고
    • Exergoenvironmental analysis of a steam methane reforming process for hydrogen production
    • Boyano A, Blanco-Marigorta AM, Morosuk T, Tsatsaronis T. Exergoenvironmental analysis of a steam methane reforming process for hydrogen production. Energy 2011; 36:2202-2214.
    • (2011) Energy , vol.36 , pp. 2202-2214
    • Boyano, A.1    Blanco-Marigorta, A.M.2    Morosuk, T.3    Tsatsaronis, T.4
  • 9
    • 84856336257 scopus 로고    scopus 로고
    • Exergy analysis: an efficient tool for understanding and improving hydrogen production via steam methane reforming process
    • Hajjaji N, Pons M-N, Houas A, Renaudin V. Exergy analysis: an efficient tool for understanding and improving hydrogen production via steam methane reforming process. Energy Policy 2012; 42:392-399.
    • (2012) Energy Policy , vol.42 , pp. 392-399
    • Hajjaji, N.1    Pons, M.-N.2    Houas, A.3    Renaudin, V.4
  • 10
    • 0035283795 scopus 로고    scopus 로고
    • Thermochemical hydrogen production: past and present
    • Funk JE. Thermochemical hydrogen production: past and present. International Journal of Hydrogen Energy 2001; 26:185-190.
    • (2001) International Journal of Hydrogen Energy , vol.26 , pp. 185-190
    • Funk, J.E.1
  • 11
    • 17044439066 scopus 로고    scopus 로고
    • Solar thermochemical production of hydrogen: a review
    • Steinfeld A. Solar thermochemical production of hydrogen: a review. Solar Energy 2005; 78:603-615.
    • (2005) Solar Energy , vol.78 , pp. 603-615
    • Steinfeld, A.1
  • 12
    • 33646161935 scopus 로고    scopus 로고
    • A hybrid thermochemical electrolytic process for hydrogen production based on the reverse Deacon reaction
    • Simpson MF, Hermann SD, Boyle BD. A hybrid thermochemical electrolytic process for hydrogen production based on the reverse Deacon reaction. International Journal of Hydrogen Energy 2006; 31:1241-1246.
    • (2006) International Journal of Hydrogen Energy , vol.31 , pp. 1241-1246
    • Simpson, M.F.1    Hermann, S.D.2    Boyle, B.D.3
  • 13
    • 84890434186 scopus 로고    scopus 로고
    • Performance investigation of magnesium-chloride hybrid thermochemical cycle for hydrogen production
    • Ozcan H, Dincer I. Performance investigation of magnesium-chloride hybrid thermochemical cycle for hydrogen production. International Journal of Hydrogen Energy 2014; 39:76-85.
    • (2014) International Journal of Hydrogen Energy , vol.39 , pp. 76-85
    • Ozcan, H.1    Dincer, I.2
  • 14
    • 84871381835 scopus 로고    scopus 로고
    • A review of solar collectors and thermal energy storage in solar thermal applications
    • Tian Y, Zhao CY. A review of solar collectors and thermal energy storage in solar thermal applications. Applied Energy 2013; 104:518-553.
    • (2013) Applied Energy , vol.104 , pp. 518-553
    • Tian, Y.1    Zhao, C.Y.2
  • 15
    • 73249144989 scopus 로고    scopus 로고
    • Thermal model and thermodynamic performance of molten salt cavity receiver
    • Li X, Kong W, Wang Z, Chang C, Bai F. Thermal model and thermodynamic performance of molten salt cavity receiver. Renewable Energy 2010; 35:981-988.
    • (2010) Renewable Energy , vol.35 , pp. 981-988
    • Li, X.1    Kong, W.2    Wang, Z.3    Chang, C.4    Bai, F.5
  • 17
    • 84942993851 scopus 로고    scopus 로고
    • Exergy Analysis and Environmental Impact Assessment of Solar-Driven Heat Pump Drying Systems
    • Springer: New York
    • Ozcan H, Dincer I. Exergy Analysis and Environmental Impact Assessment of Solar-Driven Heat Pump Drying Systems. In Causes, Impacts and Solutions to Global Warming, Springer: New York, 2013; 839-858.
    • (2013) Causes, Impacts and Solutions to Global Warming , pp. 839-858
    • Ozcan, H.1    Dincer, I.2
  • 19
    • 84885620918 scopus 로고    scopus 로고
    • Thermodynamic analysis of an integrated SOFC, solar ORC and absorption chiller for tri-generation applications
    • Ozcan H, Dincer I. Thermodynamic analysis of an integrated SOFC, solar ORC and absorption chiller for tri-generation applications. Fuel Cells 2013; 13:781-793.
    • (2013) Fuel Cells , vol.13 , pp. 781-793
    • Ozcan, H.1    Dincer, I.2
  • 20
    • 84903210233 scopus 로고    scopus 로고
    • Thermodynamic analysis of a combined chemical looping-based trigeneration system
    • Ozcan H, Dincer I. Thermodynamic analysis of a combined chemical looping-based trigeneration system. Energy Conversion and Management 2014; 85:477-487.
    • (2014) Energy Conversion and Management , vol.85 , pp. 477-487
    • Ozcan, H.1    Dincer, I.2
  • 21
    • 84908235140 scopus 로고    scopus 로고
    • Energy and exergy analyses of a solar driven Mg-Cl hybrid thermochemical cycle for co-production of power and hydrogen
    • Ozcan H, Dincer I. Energy and exergy analyses of a solar driven Mg-Cl hybrid thermochemical cycle for co-production of power and hydrogen. International Journal of Hydrogen Energy 2014; 39:15330-15341.
    • (2014) International Journal of Hydrogen Energy , vol.39 , pp. 15330-15341
    • Ozcan, H.1    Dincer, I.2
  • 23
    • 10244226616 scopus 로고    scopus 로고
    • Exergy analysis of lithium bromide/water absorption systems
    • Sencan A, Yakut KA, Kalagirou S. Exergy analysis of lithium bromide/water absorption systems. Renewable Energy 2005; 30:645-657.
    • (2005) Renewable Energy , vol.30 , pp. 645-657
    • Sencan, A.1    Yakut, K.A.2    Kalagirou, S.3
  • 24
    • 84930374759 scopus 로고    scopus 로고
    • Thermodynamic analysis of a solar driven tri-generation system for building applications
    • Dincer I, Midilli A, Kucuk H (eds). Springer: New York
    • Ozcan H, Dincer I. Thermodynamic analysis of a solar driven tri-generation system for building applications. In Progress in Exergy, Energy, and the Environment, Dincer I, Midilli A, Kucuk H (eds). Springer: New York, 2014: 169-180.
    • (2014) Progress in Exergy, Energy, and the Environment , pp. 169-180
    • Ozcan, H.1    Dincer, I.2
  • 26
    • 80052926981 scopus 로고    scopus 로고
    • Energy and exergy analysis of solar power tower plants
    • Xu C, Wang Z, Li X, Sun F. Energy and exergy analysis of solar power tower plants. Applied Thermal Engineering 2011; 31:3904-391.
    • (2011) Applied Thermal Engineering , vol.31 , pp. 3391-3904
    • Xu, C.1    Wang, Z.2    Li, X.3    Sun, F.4
  • 27
    • 84892957242 scopus 로고    scopus 로고
    • Contribution to the modeling and simulation of solar power tower plants using energy analysis
    • Bennamar S, Khellaf A, Mohammedi K. Contribution to the modeling and simulation of solar power tower plants using energy analysis. Energy Conversion and Management 2014; 78:923-930.
    • (2014) Energy Conversion and Management , vol.78 , pp. 923-930
    • Bennamar, S.1    Khellaf, A.2    Mohammedi, K.3
  • 28
    • 65649106988 scopus 로고    scopus 로고
    • Development of some exergetic parameters for PEM fuel cells for measuring environmental impact and sustainability
    • Midilli A, Dincer I. Development of some exergetic parameters for PEM fuel cells for measuring environmental impact and sustainability. International Journal of Hydrogen Energy 2009; 34:3858-3872.
    • (2009) International Journal of Hydrogen Energy , vol.34 , pp. 3858-3872
    • Midilli, A.1    Dincer, I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.