-
1
-
-
0347172110
-
OPTICS: Ordering points to identify the clustering structure
-
M. Ankerst, M. M. Breunig, H. P. Kriegel, and J. Sander. OPTICS: Ordering Points to Identify the Clustering Structure. In Proc. ACM-SIGMOD-99, pages 49-60, 1999.
-
(1999)
Proc. ACM-SIGMOD-99
, pp. 49-60
-
-
Ankerst, M.1
Breunig, M.M.2
Kriegel, H.P.3
Sander, J.4
-
2
-
-
0002188277
-
Cluster analysis using triangulation
-
World Scientific, Singapore
-
C. Eldershaw and M. Hegland. Cluster Analysis using Triangulation. In CTAC97, pages 201-208. World Scientific, Singapore, 1997.
-
(1997)
CTAC97
, pp. 201-208
-
-
Eldershaw, C.1
Hegland, M.2
-
3
-
-
85170282443
-
A density-based algorithm for discovering clusters in large spatial databases with noise
-
M. Ester, H. P. Kriegel, J. Sander, and X. Xu. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In Proc. 2nd Int. Conf. KDDM, pages 226-231, 1996.
-
(1996)
Proc. 2nd Int. Conf. KDDM
, pp. 226-231
-
-
Ester, M.1
Kriegel, H.P.2
Sander, J.3
Xu, X.4
-
4
-
-
84947813269
-
Robust clustering of large geo-referenced data sets
-
V. Estivill-Castro and M. E. Houle. Robust Clustering of Large Geo-referenced Data Sets. In Proc. 3rd PAKDD, pages 327-337, 1999.
-
(1999)
Proc. 3rd PAKDD
, pp. 327-337
-
-
Estivill-Castro, V.1
Houle, M.E.2
-
5
-
-
0010386990
-
AMOEBA: Hierarchical clustering based on spatial proximity using delaunay diagram
-
V. Estivill-Castro and I. Lee. AMOEBA: Hierarchical Clustering Based on Spatial Proximity Using Delaunay Diagram. In Proc. 9th Int. SDH, pages 7a.26-7a.41, 2000.
-
(2000)
Proc. 9th Int. SDH
, pp. 7a26-7a41
-
-
Estivill-Castro, V.1
Lee, I.2
-
6
-
-
4143100697
-
AUTOCLUST: Automatic clustering via boundary extraction for mining massive point-data sets
-
V. Estivill-Castro and I. Lee. AUTOCLUST: Automatic Clustering via Boundary Extraction for Mining Massive Point-Data Sets. In Proceedings of GeoComputation 2000, 2000.
-
(2000)
Proceedings of GeoComputation
, vol.2000
-
-
Estivill-Castro, V.1
Lee, I.2
-
7
-
-
84942911731
-
-
Technical Report 2000-07, Department of CS & SE, University of Newcastle
-
V. Estivill-Castro, I. Lee, and A. T. Murray. Spatial Clustering Analysis with Proximity Graphs Based on Cluster Boundary Characteristics. Technical Report 2000-07, http://www.cs.newcastle.edu.au, Department of CS & SE, University of Newcastle, 2000.
-
(2000)
Spatial Clustering Analysis with Proximity Graphs Based on Cluster Boundary Characteristics
-
-
Estivill-Castro, V.1
Lee, I.2
Murray, A.T.3
-
9
-
-
0032686723
-
CHAMELEON: A hierarchical clustering algorithm using dynamic modeling
-
G. Karypis, E. Han, and V. Kumar. CHAMELEON: A Hierarchical Clustering Algorithm Using Dynamic Modeling. IEEE Computer, 32(8):68-75, 1999.
-
(1999)
IEEE Computer
, vol.32
, Issue.8
, pp. 68-75
-
-
Karypis, G.1
Han, E.2
Kumar, V.3
-
10
-
-
0019144223
-
Properties of gabriel graphs relevant to geo- graphic variation research and the clustering of points in the plane
-
D. W. Matula and R. R. Sokal. Properties of Gabriel Graphs Relevant to Geo- graphic Variation Research and the Clustering of Points in the Plane. Geographical Analysis, 12:205-222, 1980.
-
(1980)
Geographical Analysis
, vol.12
, pp. 205-222
-
-
Matula, D.W.1
Sokal, R.R.2
-
11
-
-
0003136237
-
Eficient and effective clustering method for spatial data mining
-
R. T. Ng and J. Han. Eficient and Effective Clustering Method for Spatial Data Mining. In 20th VLDB, pages 144-155, 1994.
-
(1994)
20th VLDB
, pp. 144-155
-
-
Ng, R.T.1
Han, J.2
-
13
-
-
2942682542
-
Geographical data mining: Key design issues
-
S. Openshaw. Geographical data mining: Key design issues. In Proceedings of GeoComputation 99, 1999.
-
(1999)
Proceedings of GeoComputation
, vol.99
-
-
Openshaw, S.1
-
14
-
-
0032652562
-
STING+: An approach to active spatial data mining
-
W. Wang, J. Yang, and R. Muntz. STING+: An Approach to Active Spatial Data Mining. In Proc. ICDE, pages 116-125, 1999.
-
(1999)
Proc. ICDE
, pp. 116-125
-
-
Wang, W.1
Yang, J.2
Muntz, R.3
-
15
-
-
0030157145
-
BIRCH: An eficient data clustering method for very large databases
-
T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An Eficient Data Clustering Method for Very Large Databases. In Proc. ACM SIGMOD, pages 103-114, 1996.
-
(1996)
Proc. ACM SIGMOD
, pp. 103-114
-
-
Zhang, T.1
Ramakrishnan, R.2
Livny, M.3
|