메뉴 건너뛰기




Volumn 2035, Issue , 2001, Pages 348-357

Criteria on proximity graphs for boundary extraction and spatial clustering

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; DATA MINING; GRAPHIC METHODS; NEAREST NEIGHBOR SEARCH;

EID: 84942907994     PISSN: 03029743     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1007/3-540-45357-1_37     Document Type: Conference Paper
Times cited : (19)

References (15)
  • 2
    • 0002188277 scopus 로고    scopus 로고
    • Cluster analysis using triangulation
    • World Scientific, Singapore
    • C. Eldershaw and M. Hegland. Cluster Analysis using Triangulation. In CTAC97, pages 201-208. World Scientific, Singapore, 1997.
    • (1997) CTAC97 , pp. 201-208
    • Eldershaw, C.1    Hegland, M.2
  • 3
    • 85170282443 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial databases with noise
    • M. Ester, H. P. Kriegel, J. Sander, and X. Xu. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In Proc. 2nd Int. Conf. KDDM, pages 226-231, 1996.
    • (1996) Proc. 2nd Int. Conf. KDDM , pp. 226-231
    • Ester, M.1    Kriegel, H.P.2    Sander, J.3    Xu, X.4
  • 4
    • 84947813269 scopus 로고    scopus 로고
    • Robust clustering of large geo-referenced data sets
    • V. Estivill-Castro and M. E. Houle. Robust Clustering of Large Geo-referenced Data Sets. In Proc. 3rd PAKDD, pages 327-337, 1999.
    • (1999) Proc. 3rd PAKDD , pp. 327-337
    • Estivill-Castro, V.1    Houle, M.E.2
  • 5
    • 0010386990 scopus 로고    scopus 로고
    • AMOEBA: Hierarchical clustering based on spatial proximity using delaunay diagram
    • V. Estivill-Castro and I. Lee. AMOEBA: Hierarchical Clustering Based on Spatial Proximity Using Delaunay Diagram. In Proc. 9th Int. SDH, pages 7a.26-7a.41, 2000.
    • (2000) Proc. 9th Int. SDH , pp. 7a26-7a41
    • Estivill-Castro, V.1    Lee, I.2
  • 6
    • 4143100697 scopus 로고    scopus 로고
    • AUTOCLUST: Automatic clustering via boundary extraction for mining massive point-data sets
    • V. Estivill-Castro and I. Lee. AUTOCLUST: Automatic Clustering via Boundary Extraction for Mining Massive Point-Data Sets. In Proceedings of GeoComputation 2000, 2000.
    • (2000) Proceedings of GeoComputation , vol.2000
    • Estivill-Castro, V.1    Lee, I.2
  • 9
    • 0032686723 scopus 로고    scopus 로고
    • CHAMELEON: A hierarchical clustering algorithm using dynamic modeling
    • G. Karypis, E. Han, and V. Kumar. CHAMELEON: A Hierarchical Clustering Algorithm Using Dynamic Modeling. IEEE Computer, 32(8):68-75, 1999.
    • (1999) IEEE Computer , vol.32 , Issue.8 , pp. 68-75
    • Karypis, G.1    Han, E.2    Kumar, V.3
  • 10
    • 0019144223 scopus 로고
    • Properties of gabriel graphs relevant to geo- graphic variation research and the clustering of points in the plane
    • D. W. Matula and R. R. Sokal. Properties of Gabriel Graphs Relevant to Geo- graphic Variation Research and the Clustering of Points in the Plane. Geographical Analysis, 12:205-222, 1980.
    • (1980) Geographical Analysis , vol.12 , pp. 205-222
    • Matula, D.W.1    Sokal, R.R.2
  • 11
    • 0003136237 scopus 로고
    • Eficient and effective clustering method for spatial data mining
    • R. T. Ng and J. Han. Eficient and Effective Clustering Method for Spatial Data Mining. In 20th VLDB, pages 144-155, 1994.
    • (1994) 20th VLDB , pp. 144-155
    • Ng, R.T.1    Han, J.2
  • 13
    • 2942682542 scopus 로고    scopus 로고
    • Geographical data mining: Key design issues
    • S. Openshaw. Geographical data mining: Key design issues. In Proceedings of GeoComputation 99, 1999.
    • (1999) Proceedings of GeoComputation , vol.99
    • Openshaw, S.1
  • 14
    • 0032652562 scopus 로고    scopus 로고
    • STING+: An approach to active spatial data mining
    • W. Wang, J. Yang, and R. Muntz. STING+: An Approach to Active Spatial Data Mining. In Proc. ICDE, pages 116-125, 1999.
    • (1999) Proc. ICDE , pp. 116-125
    • Wang, W.1    Yang, J.2    Muntz, R.3
  • 15
    • 0030157145 scopus 로고    scopus 로고
    • BIRCH: An eficient data clustering method for very large databases
    • T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An Eficient Data Clustering Method for Very Large Databases. In Proc. ACM SIGMOD, pages 103-114, 1996.
    • (1996) Proc. ACM SIGMOD , pp. 103-114
    • Zhang, T.1    Ramakrishnan, R.2    Livny, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.