메뉴 건너뛰기




Volumn 2035, Issue , 2001, Pages 568-574

Learning Bayesian networks with hidden variables using the combination of EM and evolutionary algorithms

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; BAYESIAN NETWORKS; DATA MINING; LEARNING ALGORITHMS;

EID: 84942892611     PISSN: 03029743     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1007/3-540-45357-1_60     Document Type: Conference Paper
Times cited : (19)

References (10)
  • 1
    • 0031273462 scopus 로고    scopus 로고
    • Adaptive probabilistic networks with hidden variables
    • Binder, J., Koller, D., Russell, S., Kanazawa, K.: Adaptive probabilistic networks with hidden variables. Machine Learning 29 (1997) 213-244
    • (1997) Machine Learning , vol.29 , pp. 213-244
    • Binder, J.1    Koller, D.2    Russell, S.3    Kanazawa, K.4
  • 2
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper, G., Herskovits, E.: A Bayesian method for the induction of probabilistic networks from data. Machine Learning 9 (1992) 309-347
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.1    Herskovits, E.2
  • 4
    • 0001586968 scopus 로고    scopus 로고
    • Learning belief networks in the presence of missing values and hidden variables
    • Vanderbilt University, Morgan Kaufmann Publishers
    • Friedman, N.: Learning Belief Networks in the Presence of Missing Values and Hidden Variables. Fourteenth International Conference on Machine Learning (ICML'97) (1998), Vanderbilt University, Morgan Kaufmann Publishers
    • (1998) Fourteenth International Conference on Machine Learning (ICML'97)
    • Friedman, N.1
  • 6
    • 0028482006 scopus 로고
    • Learning Bayesian belief networks: An approach based on the MDL principle
    • Lam, W., Bacchus, F.: Learning Bayesian belief networks: An approach based on the MDL principle. Computational Intelligence 10 (1994) 269-293
    • (1994) Computational Intelligence , vol.10 , pp. 269-293
    • Lam, W.1    Bacchus, F.2
  • 7
    • 0030245966 scopus 로고    scopus 로고
    • Structure learning of Bayesian networks by genetic algorithms: A performance analysis of control parameters
    • Larranaga, P., Poza, M. et al: Structure Learning of Bayesian Networks by Genetic Algorithms: A Performance Analysis of Control Parameters. IEEE Journal on Pattern Analysis and Machine Intelligence 18(9) (1996) 912-926
    • (1996) IEEE Journal on Pattern Analysis and Machine Intelligence , vol.18 , Issue.9 , pp. 912-926
    • Larranaga, P.1    Poza, M.2
  • 8
    • 58149210716 scopus 로고
    • The EM algorithm for graphical association models with missing data
    • Lauritzen, S. L.: The EM algorithm for graphical association models with missing data. Computational Statistics and Data Analysis 19 (1995) 191-201
    • (1995) Computational Statistics and Data Analysis , vol.19 , pp. 191-201
    • Lauritzen, S.L.1
  • 9
    • 1642340376 scopus 로고    scopus 로고
    • Learning Bayesian networks from incomplete data using evolutionary algorithms
    • Myers J. W., Laskey K. B., DeJong K. A.: Learning Bayesian networks from incomplete data using evolutionary algorithms. In GECCO'99 (1999)
    • (1999) GECCO'99
    • Myers, J.W.1    Laskey, K.B.2    De Jong, K.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.