메뉴 건너뛰기




Volumn 60, Issue 18, 2015, Pages 1587-1597

Increased working voltage of hexamine-coated porous carbon for supercapacitors

Author keywords

Hexamine; High voltage; Nitrogen; Porous carbon; Supercapacitor; Surface modification

Indexed keywords


EID: 84942801518     PISSN: 20959273     EISSN: 20959281     Source Type: Journal    
DOI: 10.1007/s11434-015-0883-z     Document Type: Article
Times cited : (26)

References (49)
  • 1
    • 77956128324 scopus 로고    scopus 로고
    • Energy storage in electrochemical capacitors: designing functional materials to improve performance
    • Hall PJ, Mirzaeian M, Fletcher SI et al (2010) Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy Environ Sci 3:1238–1251
    • (2010) Energy Environ Sci , vol.3 , pp. 1238-1251
    • Hall, P.J.1    Mirzaeian, M.2    Fletcher, S.I.3
  • 3
    • 77950102167 scopus 로고    scopus 로고
    • High-rate electrochemical capacitors based on ordered mesoporous silicon carbide-derived carbon
    • Korenblit Y, Rose M, Kockrick E et al (2010) High-rate electrochemical capacitors based on ordered mesoporous silicon carbide-derived carbon. ACS Nano 4:1337–1344
    • (2010) ACS Nano , vol.4 , pp. 1337-1344
    • Korenblit, Y.1    Rose, M.2    Kockrick, E.3
  • 4
    • 77249086655 scopus 로고    scopus 로고
    • Advanced materials for energy storage
    • Liu C, Li F, Ma LP et al (2010) Advanced materials for energy storage. Adv Mater 22:E28–E62
    • (2010) Adv Mater , vol.22 , pp. E28-E62
    • Liu, C.1    Li, F.2    Ma, L.P.3
  • 5
    • 84880151349 scopus 로고    scopus 로고
    • Nanomaterials for energy conversion and storage
    • Zhang QF, Uchaker E, Candelaria SL et al (2013) Nanomaterials for energy conversion and storage. Chem Soc Rev 42:3127–3171
    • (2013) Chem Soc Rev , vol.42 , pp. 3127-3171
    • Zhang, Q.F.1    Uchaker, E.2    Candelaria, S.L.3
  • 6
    • 84863229989 scopus 로고    scopus 로고
    • Nanostructured carbon for energy storage and conversion
    • Candelaria SL, Shao YY, Zhou W et al (2012) Nanostructured carbon for energy storage and conversion. Nano Energy 1:195–220
    • (2012) Nano Energy , vol.1 , pp. 195-220
    • Candelaria, S.L.1    Shao, Y.Y.2    Zhou, W.3
  • 7
    • 77956488317 scopus 로고    scopus 로고
    • Carbon materials for electrochemical capacitors
    • Inagaki M, Konno H, Tanaike O (2010) Carbon materials for electrochemical capacitors. J Power Sources 195:7880–7903
    • (2010) J Power Sources , vol.195 , pp. 7880-7903
    • Inagaki, M.1    Konno, H.2    Tanaike, O.3
  • 8
    • 37349106546 scopus 로고    scopus 로고
    • Batteries and ultracapacitors for electric, hybrid, and fuel cell vehicles
    • Burke AF (2007) Batteries and ultracapacitors for electric, hybrid, and fuel cell vehicles. Proc IEEE 95:806–820
    • (2007) Proc IEEE , vol.95 , pp. 806-820
    • Burke, A.F.1
  • 9
    • 54949139227 scopus 로고    scopus 로고
    • Materials for electrochemical capacitors
    • Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854
    • (2008) Nat Mater , vol.7 , pp. 845-854
    • Simon, P.1    Gogotsi, Y.2
  • 10
    • 48049084548 scopus 로고    scopus 로고
    • Carbon nanotube and conducting polymer composites for supercapacitors
    • Peng C, Zhang SW, Jewell D et al (2008) Carbon nanotube and conducting polymer composites for supercapacitors. Prog Nat Sci 18:777–788
    • (2008) Prog Nat Sci , vol.18 , pp. 777-788
    • Peng, C.1    Zhang, S.W.2    Jewell, D.3
  • 11
    • 84878230759 scopus 로고    scopus 로고
    • Capacitive energy storage in nanostructured carbon–electrolyte systems
    • Simon P, Gogotsi Y (2013) Capacitive energy storage in nanostructured carbon–electrolyte systems. Acc Chem Res 46:1094–1103
    • (2013) Acc Chem Res , vol.46 , pp. 1094-1103
    • Simon, P.1    Gogotsi, Y.2
  • 12
    • 34147162801 scopus 로고    scopus 로고
    • Carbon materials for supercapacitor application
    • Frackowiak E (2007) Carbon materials for supercapacitor application. Phys Chem Chem Phys 9:1774–1785
    • (2007) Phys Chem Chem Phys , vol.9 , pp. 1774-1785
    • Frackowiak, E.1
  • 13
    • 77956965252 scopus 로고    scopus 로고
    • Extracting the full potential of single-walled carbon nanotubes as durable supercapacitor electrodes operable at 4 V with high power and energy density
    • Izadi-Najafabadi A, Yasuda S, Kobashi K et al (2010) Extracting the full potential of single-walled carbon nanotubes as durable supercapacitor electrodes operable at 4 V with high power and energy density. Adv Mater 22:E235–E241
    • (2010) Adv Mater , vol.22 , pp. E235-E241
    • Izadi-Najafabadi, A.1    Yasuda, S.2    Kobashi, K.3
  • 14
    • 78649355898 scopus 로고    scopus 로고
    • Unequalisation of electrode capacitances for enhanced energy capacity in asymmetrical supercapacitors
    • Peng C, Zhang S, Zhou X et al (2010) Unequalisation of electrode capacitances for enhanced energy capacity in asymmetrical supercapacitors. Energy Environ Sci 3:1499–1502
    • (2010) Energy Environ Sci , vol.3 , pp. 1499-1502
    • Peng, C.1    Zhang, S.2    Zhou, X.3
  • 15
    • 0024732929 scopus 로고
    • Organic aerogels from the polycondensation of resorcinol with formaldehyde
    • Pekala RW (1989) Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci 24:3221–3227
    • (1989) J Mater Sci , vol.24 , pp. 3221-3227
    • Pekala, R.W.1
  • 16
    • 1242320330 scopus 로고    scopus 로고
    • The preparation of carbon aerogels based upon the gelation of resorcinol–furfural in isopropanol with organic base catalyst
    • Wu DC, Fu RW, Zhang ST et al (2004) The preparation of carbon aerogels based upon the gelation of resorcinol–furfural in isopropanol with organic base catalyst. J Non-Cryst Solids 336:26–31
    • (2004) J Non-Cryst Solids , vol.336 , pp. 26-31
    • Wu, D.C.1    Fu, R.W.2    Zhang, S.T.3
  • 17
    • 78751705875 scopus 로고    scopus 로고
    • High performance high-purity sol–gel derived carbon supercapacitors from renewable sources
    • Garcia BB, Candelaria SL, Liu DW et al (2011) High performance high-purity sol–gel derived carbon supercapacitors from renewable sources. Renew Energy 36:1788–1794
    • (2011) Renew Energy , vol.36 , pp. 1788-1794
    • Garcia, B.B.1    Candelaria, S.L.2    Liu, D.W.3
  • 18
    • 63149095450 scopus 로고    scopus 로고
    • Enhanced electrochemical and structural properties of carbon cryogels by surface chemistry alteration with boron and nitrogen
    • Sepehri S, Garcia BB, Zhang Q et al (2009) Enhanced electrochemical and structural properties of carbon cryogels by surface chemistry alteration with boron and nitrogen. Carbon 47:1436–1443
    • (2009) Carbon , vol.47 , pp. 1436-1443
    • Sepehri, S.1    Garcia, B.B.2    Zhang, Q.3
  • 19
    • 84864487595 scopus 로고    scopus 로고
    • Nitrogenated porous carbon electrodes for supercapacitors
    • Garcia BB, Candelaria SL, Cao GZ (2012) Nitrogenated porous carbon electrodes for supercapacitors. J Mater Sci 47:5996–6004
    • (2012) J Mater Sci , vol.47 , pp. 5996-6004
    • Garcia, B.B.1    Candelaria, S.L.2    Cao, G.Z.3
  • 20
    • 84860385144 scopus 로고    scopus 로고
    • Nitrogen modification of highly porous carbon for improved supercapacitor performance
    • Candelaria SL, Garcia BB, Liu DW et al (2012) Nitrogen modification of highly porous carbon for improved supercapacitor performance. J Mater Chem 22:9884–9889
    • (2012) J Mater Chem , vol.22 , pp. 9884-9889
    • Candelaria, S.L.1    Garcia, B.B.2    Liu, D.W.3
  • 21
    • 84891588397 scopus 로고    scopus 로고
    • Sulfurized activated carbon for high energy density supercapacitors
    • Huang YX, Candelaria SL, Li YW et al (2014) Sulfurized activated carbon for high energy density supercapacitors. J Power Sources 252:90–97
    • (2014) J Power Sources , vol.252 , pp. 90-97
    • Huang, Y.X.1    Candelaria, S.L.2    Li, Y.W.3
  • 22
    • 84900831263 scopus 로고    scopus 로고
    • Sulfur-rich carbon cryogel for supercapacitor with improved conductivity and wettability
    • Zhou Y, Candelaria SL, Cao GZ et al (2014) Sulfur-rich carbon cryogel for supercapacitor with improved conductivity and wettability. J Mater Chem A 2:8472–8482
    • (2014) J Mater Chem A , vol.2 , pp. 8472-8482
    • Zhou, Y.1    Candelaria, S.L.2    Cao, G.Z.3
  • 23
    • 84922336040 scopus 로고    scopus 로고
    • Porous carbon with high capacitance and graphitization through controlled addition and removal of sulfur-containing compounds
    • Zhao Y, Candelaria SL, Liu Q et al (2015) Porous carbon with high capacitance and graphitization through controlled addition and removal of sulfur-containing compounds. Nano Energy 12:567–577
    • (2015) Nano Energy , vol.12 , pp. 567-577
    • Zhao, Y.1    Candelaria, S.L.2    Liu, Q.3
  • 24
    • 84896998577 scopus 로고    scopus 로고
    • Recent progress on nitrogen/carbon structures designed for use in energy and sustainability applications
    • Wood KN, O’Hayre R, Pylypenko S (2014) Recent progress on nitrogen/carbon structures designed for use in energy and sustainability applications. Energy Environ Sci 7:1212–1249
    • (2014) Energy Environ Sci , vol.7 , pp. 1212-1249
    • Wood, K.N.1    O’Hayre, R.2    Pylypenko, S.3
  • 25
    • 14844322199 scopus 로고    scopus 로고
    • Supercapacitors prepared from melamine-based carbon
    • Hulicova D, Yamashita J, Soneda Y et al (2005) Supercapacitors prepared from melamine-based carbon. Chem Mater 17:1241–1247
    • (2005) Chem Mater , vol.17 , pp. 1241-1247
    • Hulicova, D.1    Yamashita, J.2    Soneda, Y.3
  • 26
    • 0032042790 scopus 로고    scopus 로고
    • Effects of processing variable on melamine–formaldehyde aerogel formation
    • Nguyen MH, Dao LH (1998) Effects of processing variable on melamine–formaldehyde aerogel formation. J Non-Cryst Solids 225:51–57
    • (1998) J Non-Cryst Solids , vol.225 , pp. 51-57
    • Nguyen, M.H.1    Dao, L.H.2
  • 27
    • 34547493354 scopus 로고    scopus 로고
    • The large electrochemical capacitance of microporous doped carbon obtained by using a zeolite template
    • Ania CO, Khomenko V, Raymundo-Pinero E et al (2007) The large electrochemical capacitance of microporous doped carbon obtained by using a zeolite template. Adv Funct Mater 17:1828–1836
    • (2007) Adv Funct Mater , vol.17 , pp. 1828-1836
    • Ania, C.O.1    Khomenko, V.2    Raymundo-Pinero, E.3
  • 28
    • 84893875289 scopus 로고    scopus 로고
    • Integrated synthesis of nitrogen-doped mesoporous carbon from melamine resins with superior performance in supercapacitors
    • Li M, Xue JM (2014) Integrated synthesis of nitrogen-doped mesoporous carbon from melamine resins with superior performance in supercapacitors. J Phys Chem C 118:2507–2517
    • (2014) J Phys Chem C , vol.118 , pp. 2507-2517
    • Li, M.1    Xue, J.M.2
  • 29
    • 84877663410 scopus 로고    scopus 로고
    • Nitrogen-doped mesoporous carbons originated from ionic liquids as electrode materials for supercapacitors
    • Qiu B, Pan CT, Qian WJ et al (2013) Nitrogen-doped mesoporous carbons originated from ionic liquids as electrode materials for supercapacitors. J Mater Chem A 1:6373–6378
    • (2013) J Mater Chem A , vol.1 , pp. 6373-6378
    • Qiu, B.1    Pan, C.T.2    Qian, W.J.3
  • 30
    • 0037447755 scopus 로고    scopus 로고
    • Ammoxidation of active carbons for improvement of supercapacitor characteristics
    • Jurewicz K, Babel K, Ziolkowski A et al (2003) Ammoxidation of active carbons for improvement of supercapacitor characteristics. Electrochim Acta 48:1491–1498
    • (2003) Electrochim Acta , vol.48 , pp. 1491-1498
    • Jurewicz, K.1    Babel, K.2    Ziolkowski, A.3
  • 31
    • 0028710577 scopus 로고
    • Amination and ammoxidation of activated carbons
    • Jansen RJJ, van Bekkum H (1994) Amination and ammoxidation of activated carbons. Carbon 32:1507–1516
    • (1994) Carbon , vol.32 , pp. 1507-1516
    • Jansen, R.J.J.1    van Bekkum, H.2
  • 32
    • 78951478374 scopus 로고    scopus 로고
    • Ammonia modification of activated carbon to enhance carbon dioxide adsorption: effect of pre-oxidation
    • Shafeeyan MS, Daud WMAW, Houshmand A et al (2011) Ammonia modification of activated carbon to enhance carbon dioxide adsorption: effect of pre-oxidation. Appl Surf Sci 257:3936–3942
    • (2011) Appl Surf Sci , vol.257 , pp. 3936-3942
    • Shafeeyan, M.S.1    Daud, W.M.A.W.2    Houshmand, A.3
  • 33
    • 84989931755 scopus 로고    scopus 로고
    • Ammonia treatment of activated carbon powders for supercapacitor electrode application
    • Laheaar A, Delpeux-Ouldriane S, Lust E et al (2014) Ammonia treatment of activated carbon powders for supercapacitor electrode application. J Electrochem Soc 161:A568–A575
    • (2014) J Electrochem Soc , vol.161 , pp. A568-A575
    • Laheaar, A.1    Delpeux-Ouldriane, S.2    Lust, E.3
  • 34
    • 34548701054 scopus 로고    scopus 로고
    • Preparation and characterization of carbonaceous materials containing nitrogen as electrochemical capacitor
    • Kawaguchi M, Itoh A, Yagi S et al (2007) Preparation and characterization of carbonaceous materials containing nitrogen as electrochemical capacitor. J Power Sources 172:481–486
    • (2007) J Power Sources , vol.172 , pp. 481-486
    • Kawaguchi, M.1    Itoh, A.2    Yagi, S.3
  • 35
    • 0037419945 scopus 로고    scopus 로고
    • Polyaniline-deposited porous carbon electrode for supercapacitor
    • Chen WC, Wen TC, Teng HS (2003) Polyaniline-deposited porous carbon electrode for supercapacitor. Electrochim Acta 48:641–649
    • (2003) Electrochim Acta , vol.48 , pp. 641-649
    • Chen, W.C.1    Wen, T.C.2    Teng, H.S.3
  • 36
    • 21244463212 scopus 로고    scopus 로고
    • Electrochemical fabrication and capacitance of composite films of carbon nanotubes and polyaniline
    • Wu MQ, Snook GA, Gupta V et al (2005) Electrochemical fabrication and capacitance of composite films of carbon nanotubes and polyaniline. J Mater Chem 15:2297–2303
    • (2005) J Mater Chem , vol.15 , pp. 2297-2303
    • Wu, M.Q.1    Snook, G.A.2    Gupta, V.3
  • 37
    • 0036117790 scopus 로고    scopus 로고
    • Electrochemical capacitance of a nanoporous composite of carbon nanotubes and polypyrrole
    • Hughes M, Chen GZ, Shaffer MSP et al (2002) Electrochemical capacitance of a nanoporous composite of carbon nanotubes and polypyrrole. Chem Mater 14:1610–1613
    • (2002) Chem Mater , vol.14 , pp. 1610-1613
    • Hughes, M.1    Chen, G.Z.2    Shaffer, M.S.P.3
  • 38
    • 84880856646 scopus 로고    scopus 로고
    • Synthesis and characterization of polyaniline and polyaniline–carbon nanotubes nanostructures for electrochemical supercapacitors
    • Bavio MA, Acosta GG, Kessler T (2014) Synthesis and characterization of polyaniline and polyaniline–carbon nanotubes nanostructures for electrochemical supercapacitors. J Power Sources 245:475–481
    • (2014) J Power Sources , vol.245 , pp. 475-481
    • Bavio, M.A.1    Acosta, G.G.2    Kessler, T.3
  • 39
    • 0347318651 scopus 로고    scopus 로고
    • Principles and applications of electrochemical capacitors
    • Kotz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45:2483–2498
    • (2000) Electrochim Acta , vol.45 , pp. 2483-2498
    • Kotz, R.1    Carlen, M.2
  • 40
    • 78649707146 scopus 로고    scopus 로고
    • Growth of polyaniline on hollow carbon spheres for enhancing electrocapacitance
    • Lei Z, Chen Z, Zhao XS (2010) Growth of polyaniline on hollow carbon spheres for enhancing electrocapacitance. J Phys Chem C 114:19867–19874
    • (2010) J Phys Chem C , vol.114 , pp. 19867-19874
    • Lei, Z.1    Chen, Z.2    Zhao, X.S.3
  • 41
    • 67649183207 scopus 로고    scopus 로고
    • Nitrogen-enriched nonporous carbon electrodes with extraordinary supercapacitance
    • Hulicova-Jurcakova D, Kodama M, Shiraishi S et al (2009) Nitrogen-enriched nonporous carbon electrodes with extraordinary supercapacitance. Adv Funct Mater 19:1800–1809
    • (2009) Adv Funct Mater , vol.19 , pp. 1800-1809
    • Hulicova-Jurcakova, D.1    Kodama, M.2    Shiraishi, S.3
  • 42
    • 26844449527 scopus 로고    scopus 로고
    • A self-supporting electrode for supercapacitors prepared by one-step pyrolysis of carbon nanotube/polyacrylonitrile blends
    • Beguin F, Szostak K, Lota G et al (2005) A self-supporting electrode for supercapacitors prepared by one-step pyrolysis of carbon nanotube/polyacrylonitrile blends. Adv Mater 17:2380–2384
    • (2005) Adv Mater , vol.17 , pp. 2380-2384
    • Beguin, F.1    Szostak, K.2    Lota, G.3
  • 43
    • 33750441473 scopus 로고    scopus 로고
    • Supercapacitors based on carbon materials and ionic liquids
    • Frackowiak E (2006) Supercapacitors based on carbon materials and ionic liquids. J Braz Chem Soc 17:1074–1082
    • (2006) J Braz Chem Soc , vol.17 , pp. 1074-1082
    • Frackowiak, E.1
  • 44
    • 0029485366 scopus 로고
    • Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis
    • Pels JR, Kapteijn F, Moulijn JA et al (1995) Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon 33:1641–1653
    • (1995) Carbon , vol.33 , pp. 1641-1653
    • Pels, J.R.1    Kapteijn, F.2    Moulijn, J.A.3
  • 46
    • 53549091845 scopus 로고    scopus 로고
    • Electrochemical doping of pure single-walled carbon nanotubes used as supercapacitor electrodes
    • Kimizuka O, Tanaike O, Yamashita J et al (2008) Electrochemical doping of pure single-walled carbon nanotubes used as supercapacitor electrodes. Carbon 46:1999–2001
    • (2008) Carbon , vol.46 , pp. 1999-2001
    • Kimizuka, O.1    Tanaike, O.2    Yamashita, J.3
  • 47
    • 43849093796 scopus 로고    scopus 로고
    • On the performance of supercapacitors with electrodes based on carbon nanotubes and carbon activated material—a review
    • Obreja VVN (2008) On the performance of supercapacitors with electrodes based on carbon nanotubes and carbon activated material—a review. Physica E 40:2596–2605
    • (2008) Physica E , vol.40 , pp. 2596-2605
    • Obreja, V.V.N.1
  • 49
    • 34548438383 scopus 로고    scopus 로고
    • Causes of supercapacitors ageing in organic electrolyte
    • Azais P, Duclaux L, Florian P et al (2007) Causes of supercapacitors ageing in organic electrolyte. J Power Sources 171:1046–1053
    • (2007) J Power Sources , vol.171 , pp. 1046-1053
    • Azais, P.1    Duclaux, L.2    Florian, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.