메뉴 건너뛰기




Volumn 84, Issue 11, 2015, Pages 956-965

Automatic ICD-10 classification of cancers from free-text death certificates

Author keywords

Cancer classification; Death certificates; Machine learning; Natural language processing

Indexed keywords

ARTIFICIAL INTELLIGENCE; AUTOMATION; COMPUTATIONAL LINGUISTICS; DISEASES; LEARNING ALGORITHMS; LEARNING SYSTEMS; NATURAL LANGUAGE PROCESSING SYSTEMS; SUPPORT VECTOR MACHINES; TEXT PROCESSING;

EID: 84942553128     PISSN: 13865056     EISSN: 18728243     Source Type: Journal    
DOI: 10.1016/j.ijmedinf.2015.08.004     Document Type: Article
Times cited : (120)

References (18)
  • 1
  • 2
    • 79151478658 scopus 로고    scopus 로고
    • Cancer survival in Australia, Canada, Denmark, Norway, Sweden, and the UK, 1995-2007 (the international cancer benchmarking partnership): an analysis of population-based cancer registry data
    • Coleman M., Forman D., Bryant H., Butler J., Rachet B., Maringe C., Nur U., Tracey E., Coory M., Hatcher J., et al. Cancer survival in Australia, Canada, Denmark, Norway, Sweden, and the UK, 1995-2007 (the international cancer benchmarking partnership): an analysis of population-based cancer registry data. Lancet 2011, 377(9760):127-138.
    • (2011) Lancet , vol.377 , Issue.9760 , pp. 127-138
    • Coleman, M.1    Forman, D.2    Bryant, H.3    Butler, J.4    Rachet, B.5    Maringe, C.6    Nur, U.7    Tracey, E.8    Coory, M.9    Hatcher, J.10
  • 3
    • 84942553553 scopus 로고    scopus 로고
    • URL (cited 14.1014)
    • Cancer Council Australia Cancer in Australia: Facts and Figures 2014, URL http://www.cancer.org.au/about-cancer/what-is-cancer/facts-and-figures.html (cited 14.1014).
    • (2014) Cancer in Australia: Facts and Figures
  • 8
    • 84878630794 scopus 로고    scopus 로고
    • Classification of cancer-related death certificates using machine learning
    • Butt L., Zuccon G., Nguyen A., Bergheim A., Grayson N. Classification of cancer-related death certificates using machine learning. Australas. Med. J. 2013, 6(5):292.
    • (2013) Australas. Med. J. , vol.6 , Issue.5 , pp. 292
    • Butt, L.1    Zuccon, G.2    Nguyen, A.3    Bergheim, A.4    Grayson, N.5
  • 9
    • 0001916210 scopus 로고
    • Morphologic classification of human cancer
    • WB Saunders Co., Eastbourne, UK, D. Schottenfeld, J.F.J. Fraumeni (Eds.)
    • Berg J.W. Morphologic classification of human cancer. Cancer Epidemiology and Prevention 1982, 74-89. WB Saunders Co., Eastbourne, UK. D. Schottenfeld, J.F.J. Fraumeni (Eds.).
    • (1982) Cancer Epidemiology and Prevention , pp. 74-89
    • Berg, J.W.1
  • 11
    • 84882801679 scopus 로고    scopus 로고
    • Using statistical text classification to identify health information technology incidents
    • amiajnl-2012
    • Chai K.E., Anthony S., Coiera E., Magrabi F. Using statistical text classification to identify health information technology incidents. J. Am. Med. Inform. Assoc. 2013, amiajnl-2012.
    • (2013) J. Am. Med. Inform. Assoc.
    • Chai, K.E.1    Anthony, S.2    Coiera, E.3    Magrabi, F.4
  • 14
    • 79960779913 scopus 로고    scopus 로고
    • The Danish cancer registry
    • Gjerstorff M.L. The Danish cancer registry. Scand. J. Public Health 2011, 39(7 Suppl.):42-45.
    • (2011) Scand. J. Public Health , vol.39 , Issue.7 , pp. 42-45
    • Gjerstorff, M.L.1
  • 15
    • 84925884336 scopus 로고    scopus 로고
    • Text mining of cancer-related information: review of current status and future directions
    • Spasić I., Livsey J., Keane J.A., Nenadić G. Text mining of cancer-related information: review of current status and future directions. Int. J. Med. Inform. 2014, 83(9):605-623.
    • (2014) Int. J. Med. Inform. , vol.83 , Issue.9 , pp. 605-623
    • Spasić, I.1    Livsey, J.2    Keane, J.A.3    Nenadić, G.4
  • 16
    • 84902266281 scopus 로고    scopus 로고
    • Using the UMLS and simple statistical methods to semantically categorize causes of death on death certificates
    • American Medical Informatics Association
    • Riedl B., Than N., Hogarth M. Using the UMLS and simple statistical methods to semantically categorize causes of death on death certificates. AMIA Annual Symposium Proceedings, vol. 2010 2010, 677. American Medical Informatics Association.
    • (2010) AMIA Annual Symposium Proceedings, vol. 2010 , pp. 677
    • Riedl, B.1    Than, N.2    Hogarth, M.3
  • 17
    • 84860626953 scopus 로고    scopus 로고
    • Identification of pneumonia and influenza deaths using the death certificate pipeline
    • Davis K., Staes C., Duncan J., Igo S., Facelli J.C. Identification of pneumonia and influenza deaths using the death certificate pipeline. BMC Med. Inform. Decis. Mak. 2012, 12(1):37.
    • (2012) BMC Med. Inform. Decis. Mak. , vol.12 , Issue.1 , pp. 37
    • Davis, K.1    Staes, C.2    Duncan, J.3    Igo, S.4    Facelli, J.C.5
  • 18
    • 84864743926 scopus 로고    scopus 로고
    • The freetext matching algorithm: a computer program to extract diagnoses and causes of death from unstructured text in electronic health records
    • Shah A.D., Martinez C., Hemingway H. The freetext matching algorithm: a computer program to extract diagnoses and causes of death from unstructured text in electronic health records. BMC Med. Inform. Decis. Mak. 2012, 12(1):88.
    • (2012) BMC Med. Inform. Decis. Mak. , vol.12 , Issue.1 , pp. 88
    • Shah, A.D.1    Martinez, C.2    Hemingway, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.