메뉴 건너뛰기




Volumn 148, Issue , 2015, Pages 32-50

Nonlinear partial least squares regressions for spectral quantitative analysis

Author keywords

Spectral quantitative analysis; The external NPLS; The internal NPLS; The kernel NPLS; The nonlinear components extracted NPLS; The NPLS model

Indexed keywords

CARBON DIOXIDE; CARBON MONOXIDE; METHANE;

EID: 84942254320     PISSN: 01697439     EISSN: 18733239     Source Type: Journal    
DOI: 10.1016/j.chemolab.2015.08.024     Document Type: Article
Times cited : (18)

References (61)
  • 1
    • 58149471996 scopus 로고    scopus 로고
    • Unlocking interpretation in near infrared multivariate calibrations by orthogonal partial least squares
    • Stenlund H., Johansson E., Gottfries J., Trygg J. Unlocking interpretation in near infrared multivariate calibrations by orthogonal partial least squares. Anal. Chem. 2009, 81:203-209.
    • (2009) Anal. Chem. , vol.81 , pp. 203-209
    • Stenlund, H.1    Johansson, E.2    Gottfries, J.3    Trygg, J.4
  • 3
    • 78650942687 scopus 로고    scopus 로고
    • On-line dissolution determination of Baicalin in solid dispersion based on near infrared spectroscopy and circulation dissolution system
    • Mou H.Y., Wang X.J., Tian L.V., Xie L., Xie H.P. On-line dissolution determination of Baicalin in solid dispersion based on near infrared spectroscopy and circulation dissolution system. Chemom. Intell. Lab. Syst. 2011, 105:38-42.
    • (2011) Chemom. Intell. Lab. Syst. , vol.105 , pp. 38-42
    • Mou, H.Y.1    Wang, X.J.2    Tian, L.V.3    Xie, L.4    Xie, H.P.5
  • 4
    • 84869148593 scopus 로고    scopus 로고
    • Composition analysis of scattering liquids based on spatially offset visible-near-infrared spectroscopy
    • Xiong C., Li G., Lin L. Composition analysis of scattering liquids based on spatially offset visible-near-infrared spectroscopy. Appl. Spectrosc. 2012, 66:1347-1352.
    • (2012) Appl. Spectrosc. , vol.66 , pp. 1347-1352
    • Xiong, C.1    Li, G.2    Lin, L.3
  • 5
    • 84880770216 scopus 로고    scopus 로고
    • Application of near-infrared spectroscopy in micro inorganic analysis
    • Shao X.G., Ning Y., Liu F.X. Application of near-infrared spectroscopy in micro inorganic analysis. Acta Chim. Sin. 2012, 70:2109-2114.
    • (2012) Acta Chim. Sin. , vol.70 , pp. 2109-2114
    • Shao, X.G.1    Ning, Y.2    Liu, F.X.3
  • 6
    • 84877285436 scopus 로고    scopus 로고
    • Rapid determination of betulin in betula platyphylla outer bark using near-infrared spectroscopy
    • Kim N.Y., Miao Y., Young L.D. Rapid determination of betulin in betula platyphylla outer bark using near-infrared spectroscopy. Anal. Lett. 2013, 46:1289-1298.
    • (2013) Anal. Lett. , vol.46 , pp. 1289-1298
    • Kim, N.Y.1    Miao, Y.2    Young, L.D.3
  • 7
    • 84881609100 scopus 로고    scopus 로고
    • Quantitative analysis of tea using ytterbium-based internal standard near-infrared spectroscopy coupled with boosting least-squares support vector regression
    • Luo R.-M., Tan S.-M., Zhou Y.-P. Quantitative analysis of tea using ytterbium-based internal standard near-infrared spectroscopy coupled with boosting least-squares support vector regression. J. Chem. Theory Comput. 2013, 27:198-206.
    • (2013) J. Chem. Theory Comput. , vol.27 , pp. 198-206
    • Luo, R.-M.1    Tan, S.-M.2    Zhou, Y.-P.3
  • 8
    • 84878637923 scopus 로고    scopus 로고
    • Kinetic modeling of dissolution and crystallization of slurries with attenuated total reflectance uv-visible absorbance and near-infrared reflectance measurements
    • Hsieh C.H., Julien B., Mary M.N., Ellen P. Kinetic modeling of dissolution and crystallization of slurries with attenuated total reflectance uv-visible absorbance and near-infrared reflectance measurements. Anal. Chem. 2013, 85:5367-5375.
    • (2013) Anal. Chem. , vol.85 , pp. 5367-5375
    • Hsieh, C.H.1    Julien, B.2    Mary, M.N.3    Ellen, P.4
  • 9
    • 84885909060 scopus 로고    scopus 로고
    • Modified locally weighted-Partial least squares regression improving clinical predictions from infrared spectra of human serum samples
    • Perez-Guaita D., Kuligowski J., Quintas G., Garrigues S., Guardia M.D. Modified locally weighted-Partial least squares regression improving clinical predictions from infrared spectra of human serum samples. Talanta 2013, 107:368-375.
    • (2013) Talanta , vol.107 , pp. 368-375
    • Perez-Guaita, D.1    Kuligowski, J.2    Quintas, G.3    Garrigues, S.4    Guardia, M.D.5
  • 10
    • 11144325691 scopus 로고
    • Partial least-squares regression: a tutorial
    • Geladi1 P., Kowalski B.R. Partial least-squares regression: a tutorial. Anal. Chim. Acta 1986, 185:1-17.
    • (1986) Anal. Chim. Acta , vol.185 , pp. 1-17
    • Geladi1, P.1    Kowalski, B.R.2
  • 11
    • 84884730925 scopus 로고    scopus 로고
    • Near-infrared spectroscopy and partial least squares-class modeling (PLS-CM) for metabolomics fingerprinting discrimination of intervention breakfasts ingested by obese individuals
    • Beatriz A.S., Feliciano P.C., Juan G.O. Near-infrared spectroscopy and partial least squares-class modeling (PLS-CM) for metabolomics fingerprinting discrimination of intervention breakfasts ingested by obese individuals. J. Chem. Theory Comput. 2013, 27:221-232.
    • (2013) J. Chem. Theory Comput. , vol.27 , pp. 221-232
    • Beatriz, A.S.1    Feliciano, P.C.2    Juan, G.O.3
  • 14
    • 0345869929 scopus 로고    scopus 로고
    • Product optimization and control in the latent variable space ofnonlinear PLS models
    • Yacoub F., Gregor J.F.M. Product optimization and control in the latent variable space ofnonlinear PLS models. Chemom. Intell. Lab. Syst. 2004, 70:63-74.
    • (2004) Chemom. Intell. Lab. Syst. , vol.70 , pp. 63-74
    • Yacoub, F.1    Gregor, J.F.M.2
  • 16
    • 0033611717 scopus 로고    scopus 로고
    • Non-linear projection to latent structures revisited: the quadratic PLS algorithm
    • Baffi G., Martin E.B., Morris A. Non-linear projection to latent structures revisited: the quadratic PLS algorithm. Comput. Chem. Eng. 1999, 23:395-411.
    • (1999) Comput. Chem. Eng. , vol.23 , pp. 395-411
    • Baffi, G.1    Martin, E.B.2    Morris, A.3
  • 17
    • 84942240207 scopus 로고    scopus 로고
    • A nonlinear partial least squares algorithm using quadratic fuzzy inference system
    • (530-537)
    • Rahman A., Araby I., Lim J.Gino A nonlinear partial least squares algorithm using quadratic fuzzy inference system. J. Chem. Theory Comput. 2009, 23:9-10. (530-537).
    • (2009) J. Chem. Theory Comput. , vol.23 , pp. 9-10
    • Rahman, A.1    Araby, I.2    Lim, J.G.3
  • 18
    • 33846344646 scopus 로고    scopus 로고
    • Artificial neural network-based transformation for nonlinear partialleast-square regression with application to QSAR studies
    • Zhou Y.P., Jiang J.H., Lin W.Q., Xu L., Wu H.L., Shen G.L., Yu R.Q. Artificial neural network-based transformation for nonlinear partialleast-square regression with application to QSAR studies. Talanta 2007, 71:848-853.
    • (2007) Talanta , vol.71 , pp. 848-853
    • Zhou, Y.P.1    Jiang, J.H.2    Lin, W.Q.3    Xu, L.4    Wu, H.L.5    Shen, G.L.6    Yu, R.Q.7
  • 19
    • 0026578543 scopus 로고
    • Nonlinear partial least squares modeling II. Spline inner relation
    • Wold S. Nonlinear partial least squares modeling II. Spline inner relation. Chemom. Intell. Lab. Syst. 1992, 14:71-84.
    • (1992) Chemom. Intell. Lab. Syst. , vol.14 , pp. 71-84
    • Wold, S.1
  • 20
    • 0028933850 scopus 로고
    • Modern nonlinear regression methods
    • Frank I.E. Modern nonlinear regression methods. Chemom. Intell. Lab. Syst. 1995, 27:1-9.
    • (1995) Chemom. Intell. Lab. Syst. , vol.27 , pp. 1-9
    • Frank, I.E.1
  • 22
    • 2942577596 scopus 로고    scopus 로고
    • Artificial neural network analysis for evaluation of peptide MS/MS spectra in proteomics
    • Bar1czek T., Bucinski A., Ivanov A.R., Kaliszan R. Artificial neural network analysis for evaluation of peptide MS/MS spectra in proteomics. Anal. Chem. 2004, 76:1726-1732.
    • (2004) Anal. Chem. , vol.76 , pp. 1726-1732
    • Bar1czek, T.1    Bucinski, A.2    Ivanov, A.R.3    Kaliszan, R.4
  • 23
    • 0033558244 scopus 로고    scopus 로고
    • Classification of single particles analyzed by ATOFMS using an artificial neural network, ART-2A
    • Song X.H., Hopke P.K. Classification of single particles analyzed by ATOFMS using an artificial neural network, ART-2A. Anal. Chem. 1999, 71:860-865.
    • (1999) Anal. Chem. , vol.71 , pp. 860-865
    • Song, X.H.1    Hopke, P.K.2
  • 24
    • 0024880831 scopus 로고
    • Multilayer feedforward networks areuniversal approximators
    • Hornik K., Stinchcombe M., White H. Multilayer feedforward networks areuniversal approximators. Neural Netw. 1989, 2:359-366.
    • (1989) Neural Netw. , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 25
    • 33846381574 scopus 로고
    • Aspects of multi-layer feed-forward neural networks influencing the quality of the fit of univariate non-linear relationships
    • Melssen W.J., Buydens L.M.C. Aspects of multi-layer feed-forward neural networks influencing the quality of the fit of univariate non-linear relationships. Anal. Proc. 1995, 32:53-56.
    • (1995) Anal. Proc. , vol.32 , pp. 53-56
    • Melssen, W.J.1    Buydens, L.M.C.2
  • 26
    • 0028792453 scopus 로고
    • Simple encoding of infrared spectra for pattern recognition Part 2. Neural network approach using back-propagation and associative Hopfield memory
    • Schulz H., Derrick M., Stulik D. Simple encoding of infrared spectra for pattern recognition Part 2. Neural network approach using back-propagation and associative Hopfield memory. Anal. Chim. Acta 1995, 316:145-159.
    • (1995) Anal. Chim. Acta , vol.316 , pp. 145-159
    • Schulz, H.1    Derrick, M.2    Stulik, D.3
  • 27
    • 29344449132 scopus 로고    scopus 로고
    • Smart chemical taste sensor for determination and prediction of taste qualities based on a two-phase optimized radial basis function network
    • Ishihara S., Ikeda A., Citterio D., Maruyama K., Hagiwara M., Suzuki K. Smart chemical taste sensor for determination and prediction of taste qualities based on a two-phase optimized radial basis function network. Anal. Chem. 2005, 77:7908-7915.
    • (2005) Anal. Chem. , vol.77 , pp. 7908-7915
    • Ishihara, S.1    Ikeda, A.2    Citterio, D.3    Maruyama, K.4    Hagiwara, M.5    Suzuki, K.6
  • 28
    • 0026853320 scopus 로고
    • Nonlinear PLS modeling using neural networks
    • Qin S.J., McAvoy T.J. Nonlinear PLS modeling using neural networks. Comput. Chem. Eng. 1992, 16:379-391.
    • (1992) Comput. Chem. Eng. , vol.16 , pp. 379-391
    • Qin, S.J.1    McAvoy, T.J.2
  • 29
    • 0033544443 scopus 로고    scopus 로고
    • Non-linear projection to latent structures revisited (the neural network PLS algorithm)
    • Baffi G., Martin E., Morris A. Non-linear projection to latent structures revisited (the neural network PLS algorithm). Comput. Chem. Eng. 1999, 23:1293-1307.
    • (1999) Comput. Chem. Eng. , vol.23 , pp. 1293-1307
    • Baffi, G.1    Martin, E.2    Morris, A.3
  • 30
    • 65649134745 scopus 로고    scopus 로고
    • The prediction of soil chemical and physical properties from mid-infrared spectroscopy and combined partial least-squares regression and neural networks (PLS-NN) analysis
    • (2)
    • Janik L.J., Forrester S.T., Rawson A. The prediction of soil chemical and physical properties from mid-infrared spectroscopy and combined partial least-squares regression and neural networks (PLS-NN) analysis. Chemom. Intell. Lab. Syst. 2009, 97:179-188. (2).
    • (2009) Chemom. Intell. Lab. Syst. , vol.97 , pp. 179-188
    • Janik, L.J.1    Forrester, S.T.2    Rawson, A.3
  • 33
    • 0032044750 scopus 로고    scopus 로고
    • Recursive PLS algorithms for adaptivedata modeling
    • Qin S.J. Recursive PLS algorithms for adaptivedata modeling. Comput. Chem. Eng. 1998, 503-514.
    • (1998) Comput. Chem. Eng. , pp. 503-514
    • Qin, S.J.1
  • 34
    • 33846344646 scopus 로고    scopus 로고
    • Artificial neural network-based transformation for nonlinear partial least-square regression with application to QSAR studies
    • Zhou Y.P., Jiang J.H., Lin W.Q., Xu L., Wu H.L., Shen G.L., Yu R.Q. Artificial neural network-based transformation for nonlinear partial least-square regression with application to QSAR studies. Talanta 2007, 71:848-853.
    • (2007) Talanta , vol.71 , pp. 848-853
    • Zhou, Y.P.1    Jiang, J.H.2    Lin, W.Q.3    Xu, L.4    Wu, H.L.5    Shen, G.L.6    Yu, R.Q.7
  • 35
    • 0026113980 scopus 로고
    • Nonlinear principal component analysis using autoassociative neural networks
    • Kramer M.A. Nonlinear principal component analysis using autoassociative neural networks. AICHE J. 1991, 37:233-243.
    • (1991) AICHE J. , vol.37 , pp. 233-243
    • Kramer, M.A.1
  • 36
    • 0027495537 scopus 로고
    • Non-linear modelling of chemical data by combinations of linear and neural net methods
    • Walczak1 B., Wegscheider W. Non-linear modelling of chemical data by combinations of linear and neural net methods. Anal. Chim. Acta 1993, 283:508-517.
    • (1993) Anal. Chim. Acta , vol.283 , pp. 508-517
    • Walczak1, B.1    Wegscheider, W.2
  • 38
    • 0042569500 scopus 로고
    • On the reduction of a biline quantic of the nth order to form of a sum of n products by a doubles orthogonal substitution
    • Sylvester J.J. On the reduction of a biline quantic of the nth order to form of a sum of n products by a doubles orthogonal substitution. Mess. Math. 1889, 19:42-46.
    • (1889) Mess. Math. , vol.19 , pp. 42-46
    • Sylvester, J.J.1
  • 39
    • 0043015539 scopus 로고    scopus 로고
    • Nonlinear principal component analysis-based on principal curves and neural networks
    • DONG D., McAvovt T.J. Nonlinear principal component analysis-based on principal curves and neural networks. Comput. Chem. Eng. 1996, 65-78.
    • (1996) Comput. Chem. Eng. , pp. 65-78
    • Dong, D.1    McAvovt, T.J.2
  • 40
    • 0034393036 scopus 로고    scopus 로고
    • Robust nonlinear PLS based on neural networks and application to composition estimator for high-purity distillation columns
    • Liu J., Min K., Han C., Chang K.S. Robust nonlinear PLS based on neural networks and application to composition estimator for high-purity distillation columns. Korean J. Chem. Eng. 2000, 184-192.
    • (2000) Korean J. Chem. Eng. , pp. 184-192
    • Liu, J.1    Min, K.2    Han, C.3    Chang, K.S.4
  • 43
    • 0038259120 scopus 로고    scopus 로고
    • Kernel partial least squares regression in reproducing kernel Hibert space
    • Rosipal R., Trejo L.J. Kernel partial least squares regression in reproducing kernel Hibert space. J. Mach. Learn. Res. 2001, 2:97-123.
    • (2001) J. Mach. Learn. Res. , vol.2 , pp. 97-123
    • Rosipal, R.1    Trejo, L.J.2
  • 44
    • 0027530250 scopus 로고
    • SIMPLS: an alternative approach to partial least square regression
    • Jong S.d. SIMPLS: an alternative approach to partial least square regression. Chemom. Intell. Lab. Syst. 1993, 18:251-263.
    • (1993) Chemom. Intell. Lab. Syst. , vol.18 , pp. 251-263
    • Jong, S.1
  • 45
    • 33847300613 scopus 로고    scopus 로고
    • Kernel PLS regression on wavelet transformed NIR spectra for prediction of sugar content of apple
    • Nicola B.M., Theron K.I., Lammertyn J. Kernel PLS regression on wavelet transformed NIR spectra for prediction of sugar content of apple. Chemom. Intell. Lab. Syst. 2007, 85:243-252.
    • (2007) Chemom. Intell. Lab. Syst. , vol.85 , pp. 243-252
    • Nicola, B.M.1    Theron, K.I.2    Lammertyn, J.3
  • 47
    • 74149089631 scopus 로고    scopus 로고
    • Kernel partial robust M-regression as a flexible robust nonlinear modeling technique
    • Jia R., Mao Z.Z., Chang Y.Q., Zhang S.N. Kernel partial robust M-regression as a flexible robust nonlinear modeling technique. Chemom. Intell. Lab. Syst. 2010, 100:91-98.
    • (2010) Chemom. Intell. Lab. Syst. , vol.100 , pp. 91-98
    • Jia, R.1    Mao, Z.Z.2    Chang, Y.Q.3    Zhang, S.N.4
  • 48
    • 34249307438 scopus 로고    scopus 로고
    • Investigations of bagged kernel partial least squares(KPLS) and boosting KPLS with applications tonear-infrared (NIR) spectra
    • Shinzawa H., Jiang J.H., Ritthiruangdej P., Ozaki Y. Investigations of bagged kernel partial least squares(KPLS) and boosting KPLS with applications tonear-infrared (NIR) spectra. J. Chemom. 2006, 20:436-444.
    • (2006) J. Chemom. , vol.20 , pp. 436-444
    • Shinzawa, H.1    Jiang, J.H.2    Ritthiruangdej, P.3    Ozaki, Y.4
  • 49
    • 0344982260 scopus 로고    scopus 로고
    • Robust methods for partial least squares regression
    • Hubert M., Branden K.V. Robust methods for partial least squares regression. J. Chemom. 2003, 17:537-549.
    • (2003) J. Chemom. , vol.17 , pp. 537-549
    • Hubert, M.1    Branden, K.V.2
  • 50
    • 70350675244 scopus 로고    scopus 로고
    • Partial least squares and artificial neural networks modeling for predicting chlorophenol removal from aqueous solution
    • Singh K.P., Ojha P., Malik A., Jain G. Partial least squares and artificial neural networks modeling for predicting chlorophenol removal from aqueous solution. Chemom. Intell. Lab. Syst. 2009, 99:150-160.
    • (2009) Chemom. Intell. Lab. Syst. , vol.99 , pp. 150-160
    • Singh, K.P.1    Ojha, P.2    Malik, A.3    Jain, G.4
  • 51
    • 0142071014 scopus 로고    scopus 로고
    • Selection of quasi-optimal inputs in chemometrics modeling by arti? Cial neural network analysis
    • Boger Z. Selection of quasi-optimal inputs in chemometrics modeling by arti? Cial neural network analysis. Anal. Chim. Acta 2003, 490:31-40.
    • (2003) Anal. Chim. Acta , vol.490 , pp. 31-40
    • Boger, Z.1
  • 53
    • 0030607269 scopus 로고    scopus 로고
    • The Radial Basis Functions-Partial Least Squares approach as a flexible non-linear regression technique
    • WalczakaT B., Massartb D.L. The Radial Basis Functions-Partial Least Squares approach as a flexible non-linear regression technique. Anal. Chim. Acta 1996, 331:177-185.
    • (1996) Anal. Chim. Acta , vol.331 , pp. 177-185
    • WalczakaT, B.1    Massartb, D.L.2
  • 54
    • 0034642825 scopus 로고    scopus 로고
    • Local modelling with radial basis function networks
    • Walczak B., Massart D.L. Local modelling with radial basis function networks. Chemom. Intell. Lab. Syst. 2000, 50:179-198.
    • (2000) Chemom. Intell. Lab. Syst. , vol.50 , pp. 179-198
    • Walczak, B.1    Massart, D.L.2
  • 55
    • 0027629412 scopus 로고
    • Rival penalized competitive learning for clustering analysis, RBFnet, and curve detection
    • Lei X., Krzyzak A., Oja E. Rival penalized competitive learning for clustering analysis, RBFnet, and curve detection. IEEE Trans. Neural Netw. 1993, 4:636-649.
    • (1993) IEEE Trans. Neural Netw. , vol.4 , pp. 636-649
    • Lei, X.1    Krzyzak, A.2    Oja, E.3
  • 56
    • 0000672424 scopus 로고
    • Fast Learning in Networks of Locally-Tuned Processing Units
    • Moody J., Darken C.J. Fast Learning in Networks of Locally-Tuned Processing Units. Neural Comput. 1989, 1:281-294.
    • (1989) Neural Comput. , vol.1 , pp. 281-294
    • Moody, J.1    Darken, C.J.2
  • 57
    • 0000203752 scopus 로고
    • Optimal minimal neural interpretation of spectra
    • Borggaard C., Thodberg H.H. Optimal minimal neural interpretation of spectra. Anal. Chem. 1992, 64:545-551.
    • (1992) Anal. Chem. , vol.64 , pp. 545-551
    • Borggaard, C.1    Thodberg, H.H.2
  • 58
    • 1542383676 scopus 로고
    • Locally weighted regression and scatter correction for near-infrared reflectance data
    • Naes T., Isaksson T., Kowalski B. Locally weighted regression and scatter correction for near-infrared reflectance data. Anal. Chem. 1990, 62:664-673.
    • (1990) Anal. Chem. , vol.62 , pp. 664-673
    • Naes, T.1    Isaksson, T.2    Kowalski, B.3
  • 61
    • 84893751868 scopus 로고    scopus 로고
    • Non-linear calibration models for near infrared spectroscopy
    • Ni D., Nørgaard L., Mrup M. Non-linear calibration models for near infrared spectroscopy. Anal. Chimica. Acta 2014, 813:1-14.
    • (2014) Anal. Chimica. Acta , vol.813 , pp. 1-14
    • Ni, D.1    Nørgaard, L.2    Mrup, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.