메뉴 건너뛰기




Volumn 91, Issue , 2015, Pages 718-730

Thermodynamic analysis of a hybrid energy system based on CAES system and CO2 transcritical power cycle with LNG cold energy utilization

Author keywords

CO2 transcritical power cycle; Compressed air energy storage; Hybrid energy system; Liquid natural gas; Thermodynamic analysis

Indexed keywords

CARBON DIOXIDE; CAVES; COMPRESSED AIR; COMPRESSED NATURAL GAS; CRYOGENIC ENERGY STORAGE; ELECTRIC ENERGY STORAGE; ENERGY UTILIZATION; PRESSURE VESSELS; TEMPERATURE; THERMOANALYSIS; TURBINES; WASTE HEAT; WASTE HEAT UTILIZATION;

EID: 84941782814     PISSN: 13594311     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.applthermaleng.2015.08.082     Document Type: Article
Times cited : (42)

References (24)
  • 2
    • 84888139865 scopus 로고    scopus 로고
    • Compressed air energy storage with waste heat export: an Alberta case study
    • H. Safaei, and D.W. Keith Compressed air energy storage with waste heat export: an Alberta case study Energy Convers. Manag. 78 2014 114 124
    • (2014) Energy Convers. Manag. , vol.78 , pp. 114-124
    • Safaei, H.1    Keith, D.W.2
  • 3
    • 80053334581 scopus 로고    scopus 로고
    • Modeling and simulation of compressed air storage in caverns: a case study of the Huntorf plant
    • M. Raju, and S. Kumar Khaitan Modeling and simulation of compressed air storage in caverns: a case study of the Huntorf plant Appl. Energy 89 2012 474 481
    • (2012) Appl. Energy , vol.89 , pp. 474-481
    • Raju, M.1    Kumar Khaitan, S.2
  • 4
    • 33750365221 scopus 로고    scopus 로고
    • Controllable and affordable utility-scale electricity from intermittent wind resources and compressed air energy storage (CAES)
    • A. Cavallo Controllable and affordable utility-scale electricity from intermittent wind resources and compressed air energy storage (CAES) Energy 32 2007 120 127
    • (2007) Energy , vol.32 , pp. 120-127
    • Cavallo, A.1
  • 5
    • 84876466664 scopus 로고    scopus 로고
    • Dynamic simulation of air storage-based gas turbine plants
    • S.K. Khaitan, and M. Raju Dynamic simulation of air storage-based gas turbine plants Int. J. Energy Res. 37 2013 558 569
    • (2013) Int. J. Energy Res. , vol.37 , pp. 558-569
    • Khaitan, S.K.1    Raju, M.2
  • 6
    • 33749000313 scopus 로고    scopus 로고
    • Comparison of performance of compressed-air energy-storage plant with compressed-air storage with humidification
    • Y.S.H. Najjar, and N.M. Jubeh Comparison of performance of compressed-air energy-storage plant with compressed-air storage with humidification Proc. Inst. Mech. Eng. A - J. Power Energy 220 2006 581 588
    • (2006) Proc. Inst. Mech. Eng. A - J. Power Energy , vol.220 , pp. 581-588
    • Najjar, Y.S.H.1    Jubeh, N.M.2
  • 7
    • 84926625997 scopus 로고    scopus 로고
    • Thermodynamic analysis of an integrated energy system based on compressed air energy storage (CAES) system and Kalina cycle
    • P. Zhao, J. Wang, and Y. Dai Thermodynamic analysis of an integrated energy system based on compressed air energy storage (CAES) system and Kalina cycle Energy Convers. Manag. 98 2015 161 172
    • (2015) Energy Convers. Manag. , vol.98 , pp. 161-172
    • Zhao, P.1    Wang, J.2    Dai, Y.3
  • 8
    • 84871759871 scopus 로고    scopus 로고
    • Compressed air energy storage (CAES) with compressors distributed at heat loads to enable waste heat utilization
    • H. Safaei, D.W. Keith, and R.J. Hugo Compressed air energy storage (CAES) with compressors distributed at heat loads to enable waste heat utilization Appl. Energy 103 2013 165 179
    • (2013) Appl. Energy , vol.103 , pp. 165-179
    • Safaei, H.1    Keith, D.W.2    Hugo, R.J.3
  • 9
    • 84887031212 scopus 로고    scopus 로고
    • Exergy and exergoeconomic analysis of a compressed air energy storage combined with a district energy system
    • A. Bagdanavicius, and N. Jenkins Exergy and exergoeconomic analysis of a compressed air energy storage combined with a district energy system Energy Convers. Manag. 77 2014 432 440
    • (2014) Energy Convers. Manag. , vol.77 , pp. 432-440
    • Bagdanavicius, A.1    Jenkins, N.2
  • 10
    • 70749137995 scopus 로고    scopus 로고
    • Energy and exergy analysis of a micro-compressed air energy storage and air cycle heating and cooling system
    • Y.M. Kim, and D. Favrat Energy and exergy analysis of a micro-compressed air energy storage and air cycle heating and cooling system Energy 35 2010 213 220
    • (2010) Energy , vol.35 , pp. 213-220
    • Kim, Y.M.1    Favrat, D.2
  • 11
    • 84864812233 scopus 로고    scopus 로고
    • A trigeneration system based on compressed air and thermal energy storage
    • Y. Li, X. Wang, D. Li, and Y. Ding A trigeneration system based on compressed air and thermal energy storage Appl. Energy 99 2012 316 323
    • (2012) Appl. Energy , vol.99 , pp. 316-323
    • Li, Y.1    Wang, X.2    Li, D.3    Ding, Y.4
  • 12
    • 84868243133 scopus 로고    scopus 로고
    • A review of chemical heat pumps, thermodynamic cycles and thermal energy storage technologies for low grade heat utilisation
    • C.W. Chan, J. Ling-Chin, and A.P. Roskilly A review of chemical heat pumps, thermodynamic cycles and thermal energy storage technologies for low grade heat utilisation Appl. Therm. Eng. 50 2013 1257 1273
    • (2013) Appl. Therm. Eng. , vol.50 , pp. 1257-1273
    • Chan, C.W.1    Ling-Chin, J.2    Roskilly, A.P.3
  • 13
    • 84871387851 scopus 로고    scopus 로고
    • Comparison and analysis of performance using low temperature power cycles
    • H. Öhman, and P. Lundqvist Comparison and analysis of performance using low temperature power cycles Appl. Therm. Eng. 52 2013 160 169
    • (2013) Appl. Therm. Eng. , vol.52 , pp. 160-169
    • Öhman, H.1    Lundqvist, P.2
  • 14
    • 78149361308 scopus 로고    scopus 로고
    • Power-based performance comparison between carbon dioxide and R125 transcritical cycles for a low-grade heat source
    • Y.-J. Baik, M. Kim, K.C. Chang, and S.J. Kim Power-based performance comparison between carbon dioxide and R125 transcritical cycles for a low-grade heat source Appl. Energy 88 2011 892 898
    • (2011) Appl. Energy , vol.88 , pp. 892-898
    • Baik, Y.-J.1    Kim, M.2    Chang, K.C.3    Kim, S.J.4
  • 16
    • 84894241892 scopus 로고    scopus 로고
    • Thermodynamic modeling based optimization for thermal systems in heat recovery steam generator during cold start-up operation
    • P. Sindareh-Esfahani, A. Ghaffari, and P. Ahmadi Thermodynamic modeling based optimization for thermal systems in heat recovery steam generator during cold start-up operation Appl. Therm. Eng. 69 2014 286 296
    • (2014) Appl. Therm. Eng. , vol.69 , pp. 286-296
    • Sindareh-Esfahani, P.1    Ghaffari, A.2    Ahmadi, P.3
  • 17
    • 84931578885 scopus 로고    scopus 로고
    • Thermodynamic optimization of several (heat recovery steam generator) HRSG configurations for a range of exhaust gas temperatures
    • M. Nadir, and A. Ghenaiet Thermodynamic optimization of several (heat recovery steam generator) HRSG configurations for a range of exhaust gas temperatures Energy 86 2015 685 695
    • (2015) Energy , vol.86 , pp. 685-695
    • Nadir, M.1    Ghenaiet, A.2
  • 18
    • 84881111036 scopus 로고    scopus 로고
    • A comparison between exergetic and economic criteria for optimizing the heat recovery steam generators of gas-steam power plants
    • R. Carapellucci, and L. Giordano A comparison between exergetic and economic criteria for optimizing the heat recovery steam generators of gas-steam power plants Energy 58 2013 458 472
    • (2013) Energy , vol.58 , pp. 458-472
    • Carapellucci, R.1    Giordano, L.2
  • 20
    • 84902490296 scopus 로고    scopus 로고
    • 2 geothermal power generation system based on the cold energy utilization of LNG
    • 2 geothermal power generation system based on the cold energy utilization of LNG Appl. Therm. Eng. 70 2014 531 540
    • (2014) Appl. Therm. Eng. , vol.70 , pp. 531-540
    • Wang, J.1    Wang, J.2    Dai, Y.3    Zhao, P.4
  • 21
    • 82155187224 scopus 로고    scopus 로고
    • 2 power cycle driven by solar energy with liquified natural gas as its heat sink
    • 2 power cycle driven by solar energy with liquified natural gas as its heat sink Appl. Energy 92 2012 194 203
    • (2012) Appl. Energy , vol.92 , pp. 194-203
    • Song, Y.1    Wang, J.2    Dai, Y.3    Zhou, E.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.