메뉴 건너뛰기




Volumn 119, Issue 37, 2015, Pages 21345-21352

Tailoring Metal-Porphyrin-Like Active Sites on Graphene to Improve the Efficiency and Selectivity of Electrochemical CO2 Reduction

Author keywords

[No Author keywords available]

Indexed keywords

BINDING ENERGY; DENSITY FUNCTIONAL THEORY; ELECTROCATALYSTS; ELECTROLYTIC REDUCTION; FORMIC ACID; GRAPHENE; LIGANDS; PORPHYRINS; REACTION INTERMEDIATES;

EID: 84941782104     PISSN: 19327447     EISSN: 19327455     Source Type: Journal    
DOI: 10.1021/acs.jpcc.5b05518     Document Type: Article
Times cited : (96)

References (58)
  • 1
    • 84858630831 scopus 로고    scopus 로고
    • Towards Artificial Leaves for Solar Hydrogen and Fuels from Carbon Dioxide
    • Bensaid, S.; Centi, G.; Garrone, E.; Perathoner, S.; Saracco, G. Towards Artificial Leaves for Solar Hydrogen and Fuels from Carbon Dioxide ChemSusChem 2012, 5, 500-521 10.1002/cssc.201100661
    • (2012) ChemSusChem , vol.5 , pp. 500-521
    • Bensaid, S.1    Centi, G.2    Garrone, E.3    Perathoner, S.4    Saracco, G.5
  • 2
    • 33750458683 scopus 로고    scopus 로고
    • Powering the Planet: Chemical Challenges in Solar Energy Utilization
    • Lewis, N. S.; Nocera, D. G. Powering the Planet: Chemical Challenges in Solar Energy Utilization Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 15729-15735 10.1073/pnas.0603395103
    • (2006) Proc. Natl. Acad. Sci. U. S. A. , vol.103 , pp. 15729-15735
    • Lewis, N.S.1    Nocera, D.G.2
  • 3
    • 0001469873 scopus 로고
    • Production of Methane and Ethylene in Electrochemical Reduction of Carbon-Dioxide at Copper Electrode in Aqueous Hydrogencarbonate Solution
    • Hori, Y.; Kikuchi, K.; Murata, A.; Suzuki, S. Production of Methane and Ethylene in Electrochemical Reduction of Carbon-Dioxide at Copper Electrode in Aqueous Hydrogencarbonate Solution Chem. Lett. 1986, 897-898 10.1246/cl.1986.897
    • (1986) Chem. Lett. , pp. 897-898
    • Hori, Y.1    Kikuchi, K.2    Murata, A.3    Suzuki, S.4
  • 11
    • 0030218124 scopus 로고    scopus 로고
    • 2 Reduction with Cobalt Phthalocyanine Incorporated in a Polyvinylpyridine Membrane Coated on a Graphite Electrode
    • 2 Reduction with Cobalt Phthalocyanine Incorporated in a Polyvinylpyridine Membrane Coated on a Graphite Electrode J. Electroanal. Chem. 1996, 412, 125-132 10.1016/0022-0728(96)04631-1
    • (1996) J. Electroanal. Chem. , vol.412 , pp. 125-132
    • Abe, T.1    Yoshida, T.2    Tokita, S.3    Taguchi, F.4    Imaya, H.5    Kaneko, M.6
  • 12
    • 13444311809 scopus 로고    scopus 로고
    • Electrochemical Reduction of Co2Mediated by Poly-M-Aminophthalocyanines (M = Co, Ni, Fe): Poly-Co-Tetraaminophthalocyanine, a Selective Catalyst
    • Isaacs, M.; Armijo, F.; Ramirez, G.; Trollund, E.; Biaggio, S. R.; Costamagna, J.; Aguirre, M. J. Electrochemical Reduction of Co2Mediated by Poly-M-Aminophthalocyanines (M = Co, Ni, Fe): Poly-Co-Tetraaminophthalocyanine, a Selective Catalyst J. Mol. Catal. A: Chem. 2005, 229, 249-257 10.1016/j.molcata.2004.11.026
    • (2005) J. Mol. Catal. A: Chem. , vol.229 , pp. 249-257
    • Isaacs, M.1    Armijo, F.2    Ramirez, G.3    Trollund, E.4    Biaggio, S.R.5    Costamagna, J.6    Aguirre, M.J.7
  • 13
    • 0021460245 scopus 로고
    • Carbon-Dioxide Reduction at a Metal Phthalocyanine Catalyzed Carbon Electrode
    • Kapusta, S.; Hackerman, N. Carbon-Dioxide Reduction at a Metal Phthalocyanine Catalyzed Carbon Electrode J. Electrochem. Soc. 1984, 131, 1511-1514 10.1149/1.2115882
    • (1984) J. Electrochem. Soc. , vol.131 , pp. 1511-1514
    • Kapusta, S.1    Hackerman, N.2
  • 14
    • 0036608278 scopus 로고    scopus 로고
    • 2 with Transition Metal Phthalocyanine and Porphyrin Complexes Supported on Activated Carbon Fibers
    • 2 with Transition Metal Phthalocyanine and Porphyrin Complexes Supported on Activated Carbon Fibers J. Electrochem. Soc. 2002, 149, D89-D95 10.1149/1.1475690
    • (2002) J. Electrochem. Soc. , vol.149 , pp. D89-D95
    • Magdesieva, T.V.1    Yamamoto, T.2    Tryk, D.A.3    Fujishima, A.4
  • 15
    • 64249099084 scopus 로고    scopus 로고
    • Iron-Based Catalysts with Improved Oxygen Reduction Activity in Polymer Electrolyte Fuel Cells
    • Lefevre, M.; Proietti, E.; Jaouen, F.; Dodelet, J. P. Iron-Based Catalysts with Improved Oxygen Reduction Activity in Polymer Electrolyte Fuel Cells Science 2009, 324, 71-74 10.1126/science.1170051
    • (2009) Science , vol.324 , pp. 71-74
    • Lefevre, M.1    Proietti, E.2    Jaouen, F.3    Dodelet, J.P.4
  • 16
    • 84899887951 scopus 로고    scopus 로고
    • Elucidating Oxygen Reduction Active Sites in Pyrolyzed Metal-Nitrogen Coordinated Non-Precious-Metal Electrocatalyst Systems
    • Tylus, U.; Jia, Q. Y.; Strickland, K.; Ramaswamy, N.; Serov, A.; Atanassov, P.; Mukerjee, S. Elucidating Oxygen Reduction Active Sites in Pyrolyzed Metal-Nitrogen Coordinated Non-Precious-Metal Electrocatalyst Systems J. Phys. Chem. C 2014, 118, 8999-9008 10.1021/jp500781v
    • (2014) J. Phys. Chem. C , vol.118 , pp. 8999-9008
    • Tylus, U.1    Jia, Q.Y.2    Strickland, K.3    Ramaswamy, N.4    Serov, A.5    Atanassov, P.6    Mukerjee, S.7
  • 17
    • 79960683735 scopus 로고    scopus 로고
    • Theory, Synthesis, and Oxygen Reduction Catalysis of Fe-Porphyrin-Like Carbon Nanotube
    • Lee, D. H.; Lee, W. J.; Lee, W. J.; Kim, S. O.; Kim, Y. H. Theory, Synthesis, and Oxygen Reduction Catalysis of Fe-Porphyrin-Like Carbon Nanotube Phys. Rev. Lett. 2011, 106, 175502 10.1103/PhysRevLett.106.175502
    • (2011) Phys. Rev. Lett. , vol.106 , pp. 175502
    • Lee, D.H.1    Lee, W.J.2    Lee, W.J.3    Kim, S.O.4    Kim, Y.H.5
  • 22
    • 84941775961 scopus 로고    scopus 로고
    • Electrochemical Co2 Reduction to Formic Acid at Low Overpotential and with High Faradaic Efficiency on Carbon-Supported Bimetallic Pd-Pt Nanoparticles
    • Kortlever, R.; Peters, I.; Koper, S.; Koper, M. T. M. Electrochemical Co2 Reduction to Formic Acid at Low Overpotential and with High Faradaic Efficiency on Carbon-Supported Bimetallic Pd-Pt Nanoparticles ACS Catal. 2015, 5, 3916-3923 10.1021/acscatal.5b00602
    • (2015) ACS Catal. , vol.5 , pp. 3916-3923
    • Kortlever, R.1    Peters, I.2    Koper, S.3    Koper, M.T.M.4
  • 23
    • 84903781508 scopus 로고    scopus 로고
    • Intermetallic Alloys as CO Electroreduction Catalysts-Role of Isolated Active Sites
    • Karamad, M.; Tripkovic, V.; Rossmeisl, J. Intermetallic Alloys as CO Electroreduction Catalysts-Role of Isolated Active Sites ACS Catal. 2014, 4, 2268-2273 10.1021/cs500328c
    • (2014) ACS Catal. , vol.4 , pp. 2268-2273
    • Karamad, M.1    Tripkovic, V.2    Rossmeisl, J.3
  • 25
    • 27744460065 scopus 로고
    • Ab-Initio Molecular-Dynamics Simulation of the Liquid-Metal Amorphous-Semiconductor Transition in Germanium
    • Kresse, G.; Hafner, J. ab-Initio Molecular-Dynamics Simulation of the Liquid-Metal Amorphous-Semiconductor Transition in Germanium Phys. Rev. B: Condens. Matter Mater. Phys. 1994, 49, 14251-14269 10.1103/PhysRevB.49.14251
    • (1994) Phys. Rev. B: Condens. Matter Mater. Phys. , vol.49 , pp. 14251-14269
    • Kresse, G.1    Hafner, J.2
  • 27
    • 2442537377 scopus 로고    scopus 로고
    • Efficient Iterative Schemes for ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set
    • Kresse, G.; Furthmuller, J. Efficient Iterative Schemes for ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set Phys. Rev. B: Condens. Matter Mater. Phys. 1996, 54, 11169-11186 10.1103/PhysRevB.54.11169
    • (1996) Phys. Rev. B: Condens. Matter Mater. Phys. , vol.54 , pp. 11169-11186
    • Kresse, G.1    Furthmuller, J.2
  • 28
    • 0030190741 scopus 로고    scopus 로고
    • Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set
    • Kresse, G.; Furthmuller, J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set Comput. Mater. Sci. 1996, 6, 15-50 10.1016/0927-0256(96)00008-0
    • (1996) Comput. Mater. Sci. , vol.6 , pp. 15-50
    • Kresse, G.1    Furthmuller, J.2
  • 29
    • 0011236321 scopus 로고    scopus 로고
    • From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method
    • Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method Phys. Rev. B: Condens. Matter Mater. Phys. 1999, 59, 1758-1775 10.1103/PhysRevB.59.1758
    • (1999) Phys. Rev. B: Condens. Matter Mater. Phys. , vol.59 , pp. 1758-1775
    • Kresse, G.1    Joubert, D.2
  • 31
    • 4243943295 scopus 로고    scopus 로고
    • Generalized Gradient Approximation Made Simple
    • Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple Phys. Rev. Lett. 1996, 77, 3865-3868 10.1103/PhysRevLett.77.3865
    • (1996) Phys. Rev. Lett. , vol.77 , pp. 3865-3868
    • Perdew, J.P.1    Burke, K.2    Ernzerhof, M.3
  • 32
    • 84879026231 scopus 로고    scopus 로고
    • Accuracy of Exchange-Correlation Functionals and Effect of Solvation on the Surface Energy of Copper
    • Fishman, M.; Zhuang, H. L. L.; Mathew, K.; Dirschka, W.; Hennig, R. G. Accuracy of Exchange-Correlation Functionals and Effect of Solvation on the Surface Energy of Copper Phys. Rev. B: Condens. Matter Mater. Phys. 2013, 87, 245402 10.1103/PhysRevB.87.245402
    • (2013) Phys. Rev. B: Condens. Matter Mater. Phys. , vol.87 , pp. 245402
    • Fishman, M.1    Zhuang, H.L.L.2    Mathew, K.3    Dirschka, W.4    Hennig, R.G.5
  • 33
    • 84896795660 scopus 로고    scopus 로고
    • Implicit Solvation Model for Density-Functional Study of Nanocrystal Surfaces and Reaction Pathways
    • Mathew, K.; Sundararaman, R.; Letchworth-Weaver, K.; Arias, T. A.; Hennig, R. G. Implicit Solvation Model for Density-Functional Study of Nanocrystal Surfaces and Reaction Pathways J. Chem. Phys. 2014, 140, 084106 10.1063/1.4865107
    • (2014) J. Chem. Phys. , vol.140 , pp. 084106
    • Mathew, K.1    Sundararaman, R.2    Letchworth-Weaver, K.3    Arias, T.A.4    Hennig, R.G.5
  • 35
    • 56749185189 scopus 로고    scopus 로고
    • First-Principles Analysis of the Initial Electroreduction Steps of Oxygen over Pt(111)
    • Janik, M. J.; Taylor, C. D.; Neurock, M. First-Principles Analysis of the Initial Electroreduction Steps of Oxygen over Pt(111) J. Electrochem. Soc. 2009, 156, B126-B135 10.1149/1.3008005
    • (2009) J. Electrochem. Soc. , vol.156 , pp. B126-B135
    • Janik, M.J.1    Taylor, C.D.2    Neurock, M.3
  • 36
    • 77956113221 scopus 로고    scopus 로고
    • The Oxygen Reduction Reaction Mechanism on Pt(111) from Density Functional Theory Calculations
    • Tripkovic, V.; Skulason, E.; Siahrostami, S.; Nørskov, J. K.; Rossmeisl, J. The Oxygen Reduction Reaction Mechanism on Pt(111) from Density Functional Theory Calculations Electrochim. Acta 2010, 55, 7975-7981 10.1016/j.electacta.2010.02.056
    • (2010) Electrochim. Acta , vol.55 , pp. 7975-7981
    • Tripkovic, V.1    Skulason, E.2    Siahrostami, S.3    Nørskov, J.K.4    Rossmeisl, J.5
  • 37
    • 84949117224 scopus 로고    scopus 로고
    • How to Chemically Tailor Metal-Porphyrin-Like Active Sites on Carbon Nanotubes and Graphene for Minimal Overpotential in the Electrochemical Oxygen Evolution and Oxygen Reduction Reactions
    • Cheng, M. J.; Head-Gordon, M.; Bell, A. T. How to Chemically Tailor Metal-Porphyrin-Like Active Sites on Carbon Nanotubes and Graphene for Minimal Overpotential in the Electrochemical Oxygen Evolution and Oxygen Reduction Reactions J. Phys. Chem. C 2014, 118, 29482-29491 10.1021/jp507638v
    • (2014) J. Phys. Chem. C , vol.118 , pp. 29482-29491
    • Cheng, M.J.1    Head-Gordon, M.2    Bell, A.T.3
  • 38
    • 84887320044 scopus 로고    scopus 로고
    • Promotion of Oxygen Reduction by a Bio-Inspired Tethered Iron Phthalocyanine Carbon Nanotube-Based Catalyst
    • Cao, R.; Thapa, R.; Kim, H.; Xu, X.; Kim, M. G.; Li, Q.; Park, N.; Liu, M. L.; Cho, J. Promotion of Oxygen Reduction by a Bio-Inspired Tethered Iron Phthalocyanine Carbon Nanotube-Based Catalyst Nat. Commun. 2013, 4, 2076 10.1038/ncomms3076
    • (2013) Nat. Commun. , vol.4 , pp. 2076
    • Cao, R.1    Thapa, R.2    Kim, H.3    Xu, X.4    Kim, M.G.5    Li, Q.6    Park, N.7    Liu, M.L.8    Cho, J.9
  • 39
    • 84906539621 scopus 로고    scopus 로고
    • Effects of Axial Coordination of the Metal Center on the Activity of Iron Tetraphenylporphyrin as a Nonprecious Catalyst for Oxygen Reduction
    • Chlistunoff, J.; Sansiñena, J. M. Effects of Axial Coordination of the Metal Center on the Activity of Iron Tetraphenylporphyrin as a Nonprecious Catalyst for Oxygen Reduction J. Phys. Chem. C 2014, 118, 19139-19149 10.1021/jp5044249
    • (2014) J. Phys. Chem. C , vol.118 , pp. 19139-19149
    • Chlistunoff, J.1    Sansiñena, J.M.2
  • 41
    • 84874546287 scopus 로고    scopus 로고
    • Recent Developments in Synthesis and Structural Chemistry of Nonaqueous Actinide Complexes
    • Jones, M. B.; Gaunt, A. J. Recent Developments in Synthesis and Structural Chemistry of Nonaqueous Actinide Complexes Chem. Rev. 2013, 113, 1137-1198 10.1021/cr300198m
    • (2013) Chem. Rev. , vol.113 , pp. 1137-1198
    • Jones, M.B.1    Gaunt, A.J.2
  • 42
    • 84879777753 scopus 로고    scopus 로고
    • Lanthanide Single-Molecule Magnets
    • Woodruff, D. N.; Winpenny, R. E. P.; Layfield, R. A. Lanthanide Single-Molecule Magnets Chem. Rev. 2013, 113, 5110-5148 10.1021/cr400018q
    • (2013) Chem. Rev. , vol.113 , pp. 5110-5148
    • Woodruff, D.N.1    Winpenny, R.E.P.2    Layfield, R.A.3
  • 43
    • 0001683986 scopus 로고
    • Design and Synthesis of Macrocyclic Ligands and Their Complexes of Lanthanides and Actinides
    • Alexander, V. Design and Synthesis of Macrocyclic Ligands and Their Complexes of Lanthanides and Actinides Chem. Rev. 1995, 95, 273-342 10.1021/cr00034a002
    • (1995) Chem. Rev. , vol.95 , pp. 273-342
    • Alexander, V.1
  • 44
    • 80155160471 scopus 로고    scopus 로고
    • Carbon Dioxide Insertion into Uranium-Activated Dicarbonyl Complexes
    • Zuend, S. J.; Lam, O. P.; Heinemann, F. W.; Meyer, K. Carbon Dioxide Insertion into Uranium-Activated Dicarbonyl Complexes Angew. Chem., Int. Ed. 2011, 50, 10626-10630 10.1002/anie.201104189
    • (2011) Angew. Chem., Int. Ed. , vol.50 , pp. 10626-10630
    • Zuend, S.J.1    Lam, O.P.2    Heinemann, F.W.3    Meyer, K.4
  • 45
    • 84941107844 scopus 로고    scopus 로고
    • Tuning Lanthanide Reactivity Towards Small Molecules with Electron-Rich Siloxide Ligands
    • Andrez, J.; Pecaut, J.; Bayle, P. A.; Mazzanti, M. Tuning Lanthanide Reactivity Towards Small Molecules with Electron-Rich Siloxide Ligands Angew. Chem., Int. Ed. 2014, 53, 10448-10452 10.1002/anie.201405031
    • (2014) Angew. Chem., Int. Ed. , vol.53 , pp. 10448-10452
    • Andrez, J.1    Pecaut, J.2    Bayle, P.A.3    Mazzanti, M.4
  • 49
    • 84883874249 scopus 로고    scopus 로고
    • 2 Fixation
    • 2 Fixation Chem. Rev. 2013, 113, 6621-6658 10.1021/cr300463y
    • (2013) Chem. Rev. , vol.113 , pp. 6621-6658
    • Appel, A.M.1
  • 51
    • 84864227859 scopus 로고    scopus 로고
    • Formic Acid as a Hydrogen Source - Recent Developments and Future Trends
    • Grasemann, M.; Laurenczy, G. Formic Acid as a Hydrogen Source-Recent Developments and Future Trends Energy Environ. Sci. 2012, 5, 8171-8181 10.1039/c2ee21928j
    • (2012) Energy Environ. Sci. , vol.5 , pp. 8171-8181
    • Grasemann, M.1    Laurenczy, G.2
  • 52
    • 79955797276 scopus 로고    scopus 로고
    • Catalysis Acidic Ideas for Hydrogen Storage
    • Boddien, A.; Junge, H. Catalysis Acidic Ideas for Hydrogen Storage Nat. Nanotechnol. 2011, 6, 265-266 10.1038/nnano.2011.70
    • (2011) Nat. Nanotechnol. , vol.6 , pp. 265-266
    • Boddien, A.1    Junge, H.2
  • 54
    • 78049255765 scopus 로고    scopus 로고
    • Catalytic Generation of Hydrogen from Formic Acid and Its Derivatives: Useful Hydrogen Storage Materials
    • Loges, B.; Boddien, A.; Gartner, F.; Junge, H.; Beller, M. Catalytic Generation of Hydrogen from Formic Acid and Its Derivatives: Useful Hydrogen Storage Materials Top. Catal. 2010, 53, 902-914 10.1007/s11244-010-9522-8
    • (2010) Top. Catal. , vol.53 , pp. 902-914
    • Loges, B.1    Boddien, A.2    Gartner, F.3    Junge, H.4    Beller, M.5
  • 56
    • 84905695303 scopus 로고    scopus 로고
    • Selective Hydrogen Production from Formic Acid Decomposition on Pd-Au Bimetallic Surfaces
    • Yu, W. Y.; Mullen, G. M.; Flaherty, D. W.; Mullins, C. B. Selective Hydrogen Production from Formic Acid Decomposition on Pd-Au Bimetallic Surfaces J. Am. Chem. Soc. 2014, 136, 11070-11078 10.1021/ja505192v
    • (2014) J. Am. Chem. Soc. , vol.136 , pp. 11070-11078
    • Yu, W.Y.1    Mullen, G.M.2    Flaherty, D.W.3    Mullins, C.B.4
  • 57
    • 80052956695 scopus 로고    scopus 로고
    • The Electrochemical Reduction of Carbon Dioxide to Formate/Formic Acid: Engineering and Economic Feasibility
    • Agarwal, A. S.; Zhai, Y. M.; Hill, D.; Sridhar, N. The Electrochemical Reduction of Carbon Dioxide to Formate/Formic Acid: Engineering and Economic Feasibility ChemSusChem 2011, 4, 1301-1310 10.1002/cssc.201100220
    • (2011) ChemSusChem , vol.4 , pp. 1301-1310
    • Agarwal, A.S.1    Zhai, Y.M.2    Hill, D.3    Sridhar, N.4
  • 58
    • 44649143176 scopus 로고    scopus 로고
    • Recent Advances in Direct Formic Acid Fuel Cells (DFAFC)
    • Yu, X. W.; Pickup, P. G. Recent Advances in Direct Formic Acid Fuel Cells (DFAFC) J. Power Sources 2008, 182, 124-132 10.1016/j.jpowsour.2008.03.075
    • (2008) J. Power Sources , vol.182 , pp. 124-132
    • Yu, X.W.1    Pickup, P.G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.