메뉴 건너뛰기




Volumn 5, Issue , 2015, Pages

Surface Engineering of Triboelectric Nanogenerator with an Electrodeposited Gold Nanoflower Structure

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84941585188     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/srep13866     Document Type: Article
Times cited : (68)

References (29)
  • 1
    • 44849122933 scopus 로고    scopus 로고
    • An electromagnetic micro power generator for wideband environmental vibrations
    • Sari, I., Balkan, T. & Kulah, H. An Electromagnetic Micro Power Generator for Wideband Environmental Vibrations. Sensors Actuators A Phys 145-146, 405-413 (2008).
    • (2008) Sensors Actuators A Phys , vol.145-146 , pp. 405-413
    • Sari, I.1    Balkan, T.2    Kulah, H.3
  • 3
    • 34547578774 scopus 로고    scopus 로고
    • A micro electromagnetic generator for vibration energy harvesting
    • Beeby, S. P. et al. A Micro Electromagnetic Generator for Vibration Energy Harvesting. J. Micromechanics Microengineering 17, 1257-1265 (2007).
    • (2007) J. Micromechanics Microengineering , vol.17 , pp. 1257-1265
    • Beeby, S.P.1
  • 4
    • 61849130672 scopus 로고    scopus 로고
    • Electromagnetic energy harvesting from vibrations of multiple frequencies
    • Bin, Y. et al. Electromagnetic Energy Harvesting from Vibrations of Multiple Frequencies. J. Micromechanics Microengineering 19, 035001 (2009).
    • (2009) J. Micromechanics microengineering , vol.19 , pp. 035001
    • Bin, Y.1
  • 5
    • 70350656129 scopus 로고    scopus 로고
    • Electrostatic micro power generation from low-frequency vibration such as human motion
    • Naruse, Y. et al. Electrostatic Micro Power Generation from Low-Frequency Vibration such as Human Motion. J. Micromechanics Microengineering 19, 094002 (2009).
    • (2009) J. Micromechanics Microengineering , vol.19 , pp. 094002
    • Naruse, Y.1
  • 6
    • 4544299700 scopus 로고    scopus 로고
    • MEMS electrostatic micropower generator for low frequency operation
    • Mitcheson, P. D. et al. MEMS Electrostatic Micropower Generator for Low Frequency Operation. Sensors Actuators A Phy. 115, 523-529 (2004).
    • (2004) Sensors Actuators A Phy. , vol.115 , pp. 523-529
    • Mitcheson, P.D.1
  • 7
    • 70349247950 scopus 로고    scopus 로고
    • Electrostatic energy-harvesting and battery-charging CMOS system prototype
    • Torres, E. O. & Rincón-Mora, G. A. Electrostatic Energy-Harvesting and Battery-Charging CMOS System Prototype. IEEE Trans. Circuits Syst. I Regul. Pap. 56, 1938-1948 (2009).
    • (2009) IEEE Trans. Circuits Syst. i Regul. Pap. , vol.56 , pp. 1938-1948
    • Torres, E.O.1    Rincón-Mora, G.A.2
  • 8
    • 78049441684 scopus 로고    scopus 로고
    • A mems electret generator with electrostatic levitation for vibration-driven energy-harvesting applications
    • Suzuki, Y., Miki, D., Edamoto, M. & Honzumi, M. A MEMS Electret Generator with Electrostatic Levitation for Vibration-Driven Energy-Harvesting Applications. J. Micromechanics Microengineering 20, 104002 (2010).
    • (2010) J. Micromechanics Microengineering , vol.20 , pp. 104002
    • Suzuki, Y.1    Miki, D.2    Edamoto, M.3    Honzumi, M.4
  • 9
    • 33645810366 scopus 로고    scopus 로고
    • Piezoelectric nanogenerators based on zinc oxide nanowire arrays
    • Wang, Z. L. & Song, J. Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science 312, 242-246 (2006).
    • (2006) Science , vol.312 , pp. 242-246
    • Wang, Z.L.1    Song, J.2
  • 10
    • 34147113273 scopus 로고    scopus 로고
    • Direct-current nanogenerator driven by ultrasonic waves
    • Wang, X., Song, J., Liu, J. & Wang, Z. L. Direct-Current Nanogenerator Driven by Ultrasonic Waves. Science 316, 102-105 (2007).
    • (2007) Science , vol.316 , pp. 102-105
    • Wang, X.1    Song, J.2    Liu, J.3    Wang, Z.L.4
  • 11
    • 84891359308 scopus 로고    scopus 로고
    • Design strategy for a piezoelectric nanogenerator with a well-ordered nanoshell array
    • Seol, M. L. et al. Design Strategy for a Piezoelectric Nanogenerator with a Well-Ordered Nanoshell Array. ACS Nano 7, 10773-10779 (2013).
    • (2013) ACS Nano , vol.7 , pp. 10773-10779
    • Seol, M.L.1
  • 12
    • 84887819045 scopus 로고    scopus 로고
    • Piezoelectric nanogenerator with a nanoforest structure
    • Seol, M. L. et al. Piezoelectric Nanogenerator with a Nanoforest Structure. Nano Energy 2, 1142-1148 (2013).
    • (2013) Nano Energy , vol.2 , pp. 1142-1148
    • Seol, M.L.1
  • 13
    • 84858142463 scopus 로고    scopus 로고
    • Flexible triboelectric generator
    • Fan, F.-R., Tian, Z.-Q. & Lin Wang, Z. Flexible Triboelectric Generator. Nano Energy 1, 328-334 (2012).
    • (2012) Nano Energy , vol.1 , pp. 328-334
    • Fan, F.-R.1    Tian, Z.-Q.2    Lin Wang, Z.3
  • 14
    • 84873676798 scopus 로고    scopus 로고
    • Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator
    • Zhu, G. et al. Toward Large-Scale Energy Harvesting by a Nanoparticle-Enhanced Triboelectric Nanogenerator. Nano Lett 13, 847-853 (2013).
    • (2013) Nano Lett , vol.13 , pp. 847-853
    • Zhu, G.1
  • 15
    • 84888117915 scopus 로고    scopus 로고
    • Triboelectric nanogenerator using nano-ag ink as electrode material
    • Li, W., Sun, J. & Chen, M. Triboelectric Nanogenerator Using Nano-Ag Ink as Electrode Material. Nano Energy 3, 95-101 (2014).
    • (2014) Nano Energy , vol.3 , pp. 95-101
    • Li, W.1    Sun, J.2    Chen, M.3
  • 16
    • 84908473121 scopus 로고    scopus 로고
    • Nature-replicated nano-in-micro structures for triboelectric energy harvesting
    • Seol, M.-L. et al. Nature-Replicated Nano-in-Micro Structures for Triboelectric Energy Harvesting. Small 10, 3887-3894 (2014).
    • (2014) Small , vol.10 , pp. 3887-3894
    • Seol, M.-L.1
  • 17
    • 84887827926 scopus 로고    scopus 로고
    • Investigation of power generation based on stacked triboelectric nanogenerator
    • Tang, W., Meng, B. & Zhang, H. X. Investigation of Power Generation Based on Stacked Triboelectric Nanogenerator. Nano Energy 2, 1164-1171 (2013).
    • (2013) Nano Energy , vol.2 , pp. 1164-1171
    • Tang, W.1    Meng, B.2    Zhang, H.X.3
  • 18
    • 84862289254 scopus 로고    scopus 로고
    • Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films
    • Fan, F.-R. et al. Transparent Triboelectric Nanogenerators and Self-Powered Pressure Sensors Based on Micropatterned Plastic Films. Nano Lett. 12, 3109-3114 (2012).
    • (2012) Nano Lett. , vol.12 , pp. 3109-3114
    • Fan, F.-R.1
  • 19
    • 84876541745 scopus 로고    scopus 로고
    • Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions
    • Bai, P. et al. Integrated Multilayered Triboelectric Nanogenerator for Harvesting Biomechanical Energy from Human Motions. ACS Nano 7, 3713-3719 (2013).
    • (2013) ACS Nano , vol.7 , pp. 3713-3719
    • Bai, P.1
  • 20
    • 84892856965 scopus 로고    scopus 로고
    • High-performance triboelectric nanogenerator with enhanced energy density based on single-step fluorocarbon plasma treatment
    • Zhang, X.-S. et al. High-Performance Triboelectric Nanogenerator with Enhanced Energy Density Based on Single-Step Fluorocarbon Plasma Treatment. Nano Energy 4, 123-131 (2014).
    • (2014) Nano Energy , vol.4 , pp. 123-131
    • Zhang, X.-S.1
  • 21
    • 84885497229 scopus 로고    scopus 로고
    • Self-powered flexible printed circuit board with integrated triboelectric generator
    • Meng, B. et al. Self-Powered Flexible Printed Circuit Board with Integrated Triboelectric Generator. Nano Energy 2, 1101-1106 (2013).
    • (2013) Nano Energy , vol.2 , pp. 1101-1106
    • Meng, B.1
  • 22
    • 84940047542 scopus 로고    scopus 로고
    • Vertically stacked thin triboelectric nanogenerator for wind energy harvesting
    • Seol, M. et al. Vertically Stacked Thin Triboelectric Nanogenerator for Wind Energy Harvesting. Nano Energy, doi: 10. 1016/j. nanoen. 2014. 11. 016.
    • Nano Energy
    • Seol, M.1
  • 23
    • 84902324521 scopus 로고    scopus 로고
    • Transparent flexible graphene triboelectric nanogenerators
    • Kim, S. et al. Transparent Flexible Graphene Triboelectric Nanogenerators. Adv. Mater. 26, 3918-3925 (2014).
    • (2014) Adv. Mater. , vol.26 , pp. 3918-3925
    • Kim, S.1
  • 24
    • 67649148353 scopus 로고    scopus 로고
    • A well-ordered flower-like gold nanostructure for integrated sensors via surface-enhanced raman scattering
    • Kim, J.-H. et al. A Well-Ordered Flower-like Gold Nanostructure for Integrated Sensors via Surface-Enhanced Raman Scattering. Nanotechnology 20, 235302 (2009).
    • (2009) Nanotechnology , vol.20 , pp. 235302
    • Kim, J.-H.1
  • 25
    • 33750493897 scopus 로고    scopus 로고
    • Vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates
    • Kneipp, J. et al. In Vivo Molecular Probing of Cellular Compartments with Gold Nanoparticles and Nanoaggregates. Nano Lett. 6, 2225-2231 (2006).
    • (2006) Nano Lett. , vol.6 , pp. 2225-2231
    • Kneipp, J.1
  • 26
    • 76249093415 scopus 로고    scopus 로고
    • Surface-modified microelectrode array with flake nanostructure for neural recording and stimulation
    • Kim, J.-H., Kang, G., Nam, Y. & Choi, Y.-K. Surface-Modified Microelectrode Array with Flake Nanostructure for Neural Recording and Stimulation. Nanotechnology 21, 85303 (2010).
    • (2010) Nanotechnology , vol.21 , pp. 85303
    • Kim, J.-H.1    Kang, G.2    Nam, Y.3    Choi, Y.-K.4
  • 27
    • 0346256851 scopus 로고    scopus 로고
    • Gold-coated microelectrode array with thiol linked self-assembled monolayers for engineering neuronal cultures
    • Nam, Y., Chang, J. C., Wheeler, B. C. & Brewer, G. J. Gold-Coated Microelectrode Array with Thiol Linked Self-Assembled Monolayers for Engineering Neuronal Cultures. IEEE Trans. Biomed. Eng. 51, 158-165 (2004).
    • (2004) IEEE Trans. Biomed. Eng. , vol.51 , pp. 158-165
    • Nam, Y.1    Chang, J.C.2    Wheeler, B.C.3    Brewer, G.J.4
  • 28
    • 51049084865 scopus 로고    scopus 로고
    • Controlled synthesis of gold nanocomplex arrays by a combined top-down and bottom-up approach and their electrochemical behavior
    • Kim, J., Huang, X. & Choi, Y. Controlled Synthesis of Gold Nanocomplex Arrays by a Combined Top-down and Bottom-up Approach and Their Electrochemical Behavior. J. Phys. Chem. C 112, 12747-12753 (2008).
    • (2008) J. Phys. Chem. C , vol.112 , pp. 12747-12753
    • Kim, J.1    Huang, X.2    Choi, Y.3
  • 29
    • 43849113411 scopus 로고    scopus 로고
    • Wafer-scale controlled au/pt bimetallic flowerlike structure array
    • Huang, X.-J., Kim, J.-H. & Choi, Y.-K. Wafer-Scale Controlled Au/Pt Bimetallic Flowerlike Structure Array. Gold Bull. 41, 58-65 (2008).
    • (2008) Gold Bull. , vol.41 , pp. 58-65
    • Huang, X.-J.1    Kim, J.-H.2    Choi, Y.-K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.