-
1
-
-
0002211517
-
A dual algorithm for the solution of nonlinear variational problems via finite-element approximations
-
Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite-element approximations. Comp. Math. Appl. 2, 17–40 (1976)
-
(1976)
Comp. Math. Appl.
, vol.2
, pp. 17-40
-
-
Gabay, D.1
Mercier, B.2
-
2
-
-
0016536442
-
Sur l’approximation par éléments finis et la résolution par pénalisation-dualité d’une classe de problèmes de Dirichlet non linéaires. Revue Française d’Automatique, Informatique, Recherche Operationnelle, Serie Rouge (AnalyseNumérique)
-
Glowinski, R., Marrocco, A.: Sur l’approximation par éléments finis et la résolution par pénalisation-dualité d’une classe de problèmes de Dirichlet non linéaires. Revue Française d’Automatique, Informatique, Recherche Operationnelle, Serie Rouge (AnalyseNumérique), R-2,pp. 41–76 (1975)
-
(1975)
R-2
, pp. 41-76
-
-
Glowinski, R.1
Marrocco, A.2
-
3
-
-
84967782959
-
On the numerical solution of the heat conduction problem in 2 and 3 space variables
-
Douglas, J., Rachford, H.H.: On the numerical solution of the heat conduction problem in 2 and 3 space variables. Trans. Am. Math. Soc. 82, 421–439 (1956)
-
(1956)
Trans. Am. Math. Soc.
, vol.82
, pp. 421-439
-
-
Douglas, J.1
Rachford, H.H.2
-
4
-
-
0002058827
-
The numerical solution of parabolic elliptic differential equations
-
Peaceman, D.H., Rachford, H.H.: The numerical solution of parabolic elliptic differential equations. SIAM J. Appl. Math. 3, 28–41 (1955)
-
(1955)
SIAM J. Appl. Math.
, vol.3
, pp. 28-41
-
-
Peaceman, D.H.1
Rachford, H.H.2
-
5
-
-
0004177997
-
Splitting methods for monotone operators with applications to parallel optimization. PhD thesis
-
Eckstein, J.: Splitting methods for monotone operators with applications to parallel optimization. PhD thesis, Massachusetts Institute of Technology (1989)
-
(1989)
Massachusetts Institute of Technology
-
-
Eckstein, J.1
-
8
-
-
0000345334
-
Splitting algorithms for the sum of two nonlinear operators
-
Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964–979 (1979)
-
(1979)
SIAM J. Numer. Anal.
, vol.16
, pp. 964-979
-
-
Lions, P.L.1
Mercier, B.2
-
9
-
-
80051762104
-
Distributed optimization and statistical learning via the alternating direction method of multipliers
-
Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)
-
(2011)
Found. Trends Mach. Learn.
, vol.3
, Issue.1
, pp. 1-122
-
-
Boyd, S.1
Parikh, N.2
Chu, E.3
Peleato, B.4
Eckstein, J.5
-
11
-
-
34249837486
-
On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators
-
Eckstein, J., Bertsekas, D.P.: On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55, 293–318 (1992)
-
(1992)
Math. Program.
, vol.55
, pp. 293-318
-
-
Eckstein, J.1
Bertsekas, D.P.2
-
12
-
-
77957064934
-
Applications of the method of multipliers to variational inequalities
-
Fortin M, Glowinski R, (eds), North-Holland, Amsterdam
-
Gabay, D.: Applications of the method of multipliers to variational inequalities. In: Fortin, M., Glowinski, R. (eds.) Augmented Lagrangian Methods: Applications to the Solution of Boundary Value Problems. North-Holland, Amsterdam (1983)
-
(1983)
Augmented Lagrangian Methods: Applications to the Solution of Boundary Value Problems
-
-
Gabay, D.1
-
13
-
-
84892864594
-
Local linear convergence of the alternating direction method of multipliers on quadratic or linear programs
-
Boley, D.: Local linear convergence of the alternating direction method of multipliers on quadratic or linear programs. SIAM J. Optim. 23(4), 2183–2207 (2013)
-
(2013)
SIAM J. Optim.
, vol.23
, Issue.4
, pp. 2183-2207
-
-
Boley, D.1
-
14
-
-
84931078655
-
Faster convergence rates of relaxed Peaceman–Rachford and ADMM under regularity assumptions. Technical report
-
Davis, D., Yin, W.: Faster convergence rates of relaxed Peaceman–Rachford and ADMM under regularity assumptions. Technical report, UCLA CAM Report 14–58 (2014)
-
(2014)
UCLA CAM Report
, pp. 14-58
-
-
Davis, D.1
Yin, W.2
-
15
-
-
84957426142
-
On the global and linear convergence of the generalized alternating direction method of multipliers. J. Sci
-
Deng, W., Yin, W.: On the global and linear convergence of the generalized alternating direction method of multipliers. J. Sci. Comput. (2015). doi:10.1007/s10915-015-0048-x
-
(2015)
Comput
-
-
Deng, W.1
Yin, W.2
-
16
-
-
84861398963
-
On the (Formula presented.)convergence rate of Douglas–Rachford alternating direction method
-
He, B., Yuan, X.: On the $${O}(1/n)$$O(1/n) convergence rate of Douglas–Rachford alternating direction method. SIAM J. Numer. Anal. 50, 700–709 (2012)
-
(2012)
SIAM J. Numer. Anal.
, vol.50
, pp. 700-709
-
-
He, B.1
Yuan, X.2
-
17
-
-
84912569509
-
On nonergodic convergence rate of Douglas–Rachford alternating direction method of multipliers
-
He, B., Yuan, X.: On nonergodic convergence rate of Douglas–Rachford alternating direction method of multipliers. Numerische Mathematik 130(3), 567–577 (2015)
-
(2015)
Numerische Mathematik
, vol.130
, Issue.3
, pp. 567-577
-
-
He, B.1
Yuan, X.2
-
18
-
-
84877788900
-
Iteration-complexity of block-decomposition algorithms and the alternating direction method of multipliers
-
Monteiro, R.D.C., Svaiter, B.F.: Iteration-complexity of block-decomposition algorithms and the alternating direction method of multipliers. SIAM J. Optim. 23, 475–507 (2013)
-
(2013)
SIAM J. Optim.
, vol.23
, pp. 475-507
-
-
Monteiro, R.D.C.1
Svaiter, B.F.2
-
19
-
-
84953209903
-
The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent. Math
-
Chen, C., He, B., Ye, Y., Yuan, X.: The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent. Math. Program. (2014). doi:10.1007/s10107-014-0826-5
-
(2014)
Program
-
-
Chen, C.1
He, B.2
Ye, Y.3
Yuan, X.4
-
20
-
-
84866665730
-
RASL: Robust alignment by sparse and low-rank decomposition for linearly correlated images
-
Peng, Y., Ganesh, A., Wright, J., Xu, W., Ma, Y.: RASL: Robust alignment by sparse and low-rank decomposition for linearly correlated images. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2233–2246 (2012)
-
(2012)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.34
, Issue.11
, pp. 2233-2246
-
-
Peng, Y.1
Ganesh, A.2
Wright, J.3
Xu, W.4
Ma, Y.5
-
21
-
-
79957510064
-
Recovering low-rank and sparse components of matrices from incomplete and noisy observations
-
Tao, M., Yuan, X.: Recovering low-rank and sparse components of matrices from incomplete and noisy observations. SIAM J. Optim. 21, 57–81 (2011)
-
(2011)
SIAM J. Optim.
, vol.21
, pp. 57-81
-
-
Tao, M.1
Yuan, X.2
-
22
-
-
84940394631
-
A convergent 3-block semiproximal alternating direction method of multipliers for conic programming with 4-type constraints
-
Sun, D., Toh, K.-C., Yang, L.: A convergent 3-block semiproximal alternating direction method of multipliers for conic programming with 4-type constraints. SIAM J. Optim. 25, 882–915 (2015)
-
(2015)
SIAM J. Optim.
, vol.25
, pp. 882-915
-
-
Sun, D.1
Toh, K.-C.2
Yang, L.3
-
23
-
-
84941349616
-
Solving multiple-block separable convex minimization problems using two-block alternating direction method of multipliers (2013)
-
Wang, X., Hong, M., Ma, S., Luo, Z.-Q.: Solving multiple-block separable convex minimization problems using two-block alternating direction method of multipliers (2013). Preprint arXiv:1308.5294
-
Preprint arXiv
, pp. 5294
-
-
Wang, X.1
Hong, M.2
Ma, S.3
Luo, Z.-Q.4
-
24
-
-
84867535196
-
A note on the alternating direction method of multipliers
-
Han, D., Yuan, X.: A note on the alternating direction method of multipliers. J. Optim. Theory Appl. 155(1), 227–238 (2012)
-
(2012)
J. Optim. Theory Appl.
, vol.155
, Issue.1
, pp. 227-238
-
-
Han, D.1
Yuan, X.2
-
25
-
-
84887465144
-
-
Article ID
-
Chen, C., Shen, Y., You, Y.: On the convergence analysis of the alternating direction method of multipliers with three blocks. Abstract and Applied Analysis, Article ID 183961 (2013). doi:10.1155/2013/183961
-
(2013)
Chen, C., Shen, Y., You, Y.: On the convergence analysis of the alternating direction method of multipliers with three blocks. Abstract and Applied Analysis
-
-
-
26
-
-
84941362951
-
-
The direct extension of ADMM for three-block separable convex minimization models is convergent when one function is strongly convex, Preprint
-
Cai, X., Han, D., Yuan, X.: The direct extension of ADMM for three-block separable convex minimization models is convergent when one function is strongly convex (2014). Preprint http://www.optimization-online.org/DB_HTML/2014/11/4644.html
-
(2014)
Yuan, X.
-
-
Cai, X.1
Han, D.2
-
27
-
-
84938076087
-
A convergent 3-block semi-proximal ADMM for convex minimization problems with one strongly convex block
-
Li, M., Sun, D., Toh, K.C.: A convergent 3-block semi-proximal ADMM for convex minimization problems with one strongly convex block. Asia-Pacific J. Oper. Res. 32(3), 1550024 (2015)
-
(2015)
Asia-Pacific J. Oper. Res.
, vol.32
, Issue.3
, pp. 1550024
-
-
Li, M.1
Sun, D.2
Toh, K.C.3
-
28
-
-
84941348744
-
A three-operator splitting scheme and its optimization applications. Technical report
-
Davis, D., Yin, W.: A three-operator splitting scheme and its optimization applications. Technical report, UCLA CAM Report 15–13 (2015)
-
(2015)
UCLA CAM Report
, pp. 13-15
-
-
Davis, D.1
Yin, W.2
-
29
-
-
84941366043
-
Iteration complexity analysis of multi-block ADMM for a family of convex minimization without strong convexity (2015)
-
Lin, T., Ma, S., Zhang, S.: Iteration complexity analysis of multi-block ADMM for a family of convex minimization without strong convexity (2015). Preprint arXiv:1504.03087
-
Preprint arXiv
, pp. 03087
-
-
Lin, T.1
Ma, S.2
Zhang, S.3
-
30
-
-
84984579854
-
Global convergence of unmodified 3-block ADMM for a class of convex minimization problems (2015)
-
Lin, T., Ma, S., Zhang, S.: Global convergence of unmodified 3-block ADMM for a class of convex minimization problems (2015). Preprint arXiv:1505.04252
-
Preprint arXiv
, pp. 4252
-
-
Lin, T.1
Ma, S.2
Zhang, S.3
-
31
-
-
84941347941
-
On the linear convergence of the alternating direction method of multipliers (2012)
-
Hong, M., Luo, Z.: On the linear convergence of the alternating direction method of multipliers (2012). Preprint arXiv:1208.3922
-
Preprint arXiv
, pp. 3922
-
-
Hong, M.1
Luo, Z.2
-
32
-
-
84941366078
-
Parallel multi-block ADMM with $$o(1/k)$$o(1/k) convergence (2013)
-
Deng, W., Lai, M., Peng, Z., Yin, W.: Parallel multi-block ADMM with $$o(1/k)$$o(1/k) convergence (2013). Preprint arXiv:1312.3040
-
Preprint arXiv
, pp. 3040
-
-
Deng, W.1
Lai, M.2
Peng, Z.3
Yin, W.4
-
33
-
-
84941330635
-
-
On full Jacobian decomposition of the augmented Lagrangian method for separable convex programming, Preprint
-
He, B., Hou, L., Yuan, X.: On full Jacobian decomposition of the augmented Lagrangian method for separable convex programming (2013). Preprint http://www.optimization-online.org/DB_HTML/2013/05/3894.html
-
(2013)
Yuan, X.
-
-
He, B.1
Hou, L.2
-
34
-
-
84865692854
-
Alternating direction method with Gaussian back substitution for separable convex programming
-
He, B., Tao, M., Yuan, X.: Alternating direction method with Gaussian back substitution for separable convex programming. SIAM J. Optim. 22, 313–340 (2012)
-
(2012)
SIAM J. Optim.
, vol.22
, pp. 313-340
-
-
He, B.1
Tao, M.2
Yuan, X.3
-
36
-
-
84941343870
-
A block successive upper bound minimization method of multipliers for linearly constrained convex optimization (2014)
-
Hong, M., Chang, T.-H., Wang, X., Razaviyayn, M., Ma, S., Luo, Z.-Q.: A block successive upper bound minimization method of multipliers for linearly constrained convex optimization (2014). Preprint arXiv:1401.7079
-
Preprint arXiv
, pp. 7079
-
-
Hong, M.1
Chang, T.-H.2
Wang, X.3
Razaviyayn, M.4
Ma, S.5
Luo, Z.-Q.6
-
37
-
-
84944590174
-
-
SIAM J, Optim., to appear
-
Lin, T., Ma, S., Zhang, S.: On the global linear convergence of the ADMM with multi-block variables. SIAM J. Optim., to appear (2015)
-
(2015)
On the global linear convergence of the ADMM with multi-block variables
-
-
Lin, T.1
Ma, S.2
Zhang, S.3
|