메뉴 건너뛰기




Volumn 63, Issue , 2016, Pages 96-99

Modeling and Management of Big Data: Challenges and opportunities

Author keywords

Conceptual modeling Big Data; Ecosystem; Integrate analyze visualize

Indexed keywords


EID: 84941254248     PISSN: 0167739X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.future.2015.07.019     Document Type: Editorial
Times cited : (53)

References (32)
  • 2
    • 84950109804 scopus 로고    scopus 로고
    • Design science research contribution to business intelligence in the cloud — a systematic literature review
    • [2] Sangupamba Mwilu, O., Prat, N., Comyn-Wattiau, I., Design science research contribution to business intelligence in the cloud — a systematic literature review. Future Gener. Comput. Syst. 63 (2016), 108–122.
    • (2016) Future Gener. Comput. Syst. , vol.63 , pp. 108-122
    • Sangupamba Mwilu, O.1    Prat, N.2    Comyn-Wattiau, I.3
  • 5
    • 84961310427 scopus 로고    scopus 로고
    • Benchmarking performance for migrating a relational application to a parallel implementation
    • [5] Gadiraju, K.K., Verma, M., Davis, K.C., Talaga, P.G., Benchmarking performance for migrating a relational application to a parallel implementation. Future Gener. Comput. Syst. 63 (2016), 148–156.
    • (2016) Future Gener. Comput. Syst. , vol.63 , pp. 148-156
    • Gadiraju, K.K.1    Verma, M.2    Davis, K.C.3    Talaga, P.G.4
  • 6
    • 80051803315 scopus 로고    scopus 로고
    • Data, data everywhere: a special report on managing information
    • [6] Cukier, K., Data, data everywhere: a special report on managing information. Economist Newspaper, 2010.
    • (2010) Economist Newspaper
    • Cukier, K.1
  • 7
    • 84873131659 scopus 로고    scopus 로고
    • Challenges and opportunities with big data
    • [7] Labrinidis, A., Jagadish, H., Challenges and opportunities with big data. Proc. VLDB Endow. 5:12 (2012), 2032–2033.
    • (2012) Proc. VLDB Endow. , vol.5 , Issue.12 , pp. 2032-2033
    • Labrinidis, A.1    Jagadish, H.2
  • 8
    • 84975897278 scopus 로고    scopus 로고
    • 3-d data management: Controlling data volume. Velocity and Variety, META Group Original Research Note, 2001.
    • [8] D. Laney, 3-d data management: Controlling data volume. Velocity and Variety, META Group Original Research Note, 2001.
    • Laney, D.1
  • 9
    • 84900644792 scopus 로고    scopus 로고
    • Mining big data: current status, and forecast to the future
    • [9] Fan, W., Bifet, A., Mining big data: current status, and forecast to the future. ACM sIGKDD Explorations Newsletter 14:2 (2013), 1–5.
    • (2013) ACM sIGKDD Explorations Newsletter , vol.14 , Issue.2 , pp. 1-5
    • Fan, W.1    Bifet, A.2
  • 10
    • 63649117166 scopus 로고    scopus 로고
    • Cloud computing and emerging it platforms: vision, hype, and reality for delivering computing as the 5th utility
    • [10] Buyya, R., Yeo, C.~S., Venugopal, S., Broberg, J., Brandic, I., Cloud computing and emerging it platforms: vision, hype, and reality for delivering computing as the 5th utility. Future Gener. Comput. Syst. 25:6 (2009), 599–616.
    • (2009) Future Gener. Comput. Syst. , vol.25 , Issue.6 , pp. 599-616
    • Buyya, R.1    Yeo, C.S.2    Venugopal, S.3    Broberg, J.4    Brandic, I.5
  • 11
    • 84876943063 scopus 로고    scopus 로고
    • Internet of things (iot): a vision, architectural elements, and future directions
    • [11] Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M., Internet of things (iot): a vision, architectural elements, and future directions. Future Gener. Comput. Syst. 29:7 (2013), 1645–1660.
    • (2013) Future Gener. Comput. Syst. , vol.29 , Issue.7 , pp. 1645-1660
    • Gubbi, J.1    Buyya, R.2    Marusic, S.3    Palaniswami, M.4
  • 12
    • 84901607859 scopus 로고    scopus 로고
    • Intelligent services for big data science
    • [12] Dobre, C., Xhafa, F., Intelligent services for big data science. Future Gener. Comput. Syst. 37 (2014), 267–281.
    • (2014) Future Gener. Comput. Syst. , vol.37 , pp. 267-281
    • Dobre, C.1    Xhafa, F.2
  • 13
    • 84921817283 scopus 로고    scopus 로고
    • Making sense of big data with the berkeley data analytics stack
    • [13] Franklin, M.~J., Making sense of big data with the berkeley data analytics stack. SSDBM, 2013, 1.
    • (2013) SSDBM , pp. 1
    • Franklin, M.J.1
  • 14
    • 85013790653 scopus 로고    scopus 로고
    • Principles of Data Integration
    • Elsevier
    • [14] Doan, A., Halevy, A., Ives, Z., Principles of Data Integration. 2012, Elsevier.
    • (2012)
    • Doan, A.1    Halevy, A.2    Ives, Z.3
  • 15
    • 84894113651 scopus 로고    scopus 로고
    • Big data conceptual modeling to the rescue
    • Springer
    • [15] Embley, D.~W., Liddle, S.~W., Big data conceptual modeling to the rescue. Conceptual Modeling, 2013, Springer, 1–8.
    • (2013) Conceptual Modeling , pp. 1-8
    • Embley, D.W.1    Liddle, S.W.2
  • 16
    • 84976766949 scopus 로고
    • The entity-relationship model toward a unified view of data
    • [16] Chen, P.~P.-S., The entity-relationship model toward a unified view of data. ACM Trans. Database Syst. (TODS) 1:1 (1976), 9–36.
    • (1976) ACM Trans. Database Syst. (TODS) , vol.1 , Issue.1 , pp. 9-36
    • Chen, P.P.-S.1
  • 17
    • 80455129401 scopus 로고    scopus 로고
    • Best-effort modeling of structured data on the web
    • Springer 32-32
    • [17] Halevy, A., Best-effort modeling of structured data on the web. Conceptual Modeling–ER 2011, 2011, Springer 32-32.
    • (2011) Conceptual Modeling–ER 2011
    • Halevy, A.1
  • 25
    • 70849126253 scopus 로고    scopus 로고
    • The unreasonable effectiveness of data
    • [25] Halevy, A., Norvig, P., Pereira, F., The unreasonable effectiveness of data. IEEE Intel. Syst. 24:2 (2009), 8–12.
    • (2009) IEEE Intel. Syst. , vol.24 , Issue.2 , pp. 8-12
    • Halevy, A.1    Norvig, P.2    Pereira, F.3
  • 28
    • 84900800509 scopus 로고    scopus 로고
    • Data-intensive applications, challenges, tech- niques and technologies: A survey on big data
    • [28] Chen, C.P., Zhang, C.-Y., Data-intensive applications, challenges, tech- niques and technologies: A survey on big data. Inform. Sci. 275 (2014), 314–347.
    • (2014) Inform. Sci. , vol.275 , pp. 314-347
    • Chen, C.P.1    Zhang, C.-Y.2
  • 31
    • 84916597404 scopus 로고    scopus 로고
    • Business intelligence and analytics: From big data to big impact
    • [31] Chen, H., Chiang, R.H., Storey, V.C., Business intelligence and analytics: From big data to big impact. MIS Quart. 36:4 (2012), 1165–1188.
    • (2012) MIS Quart. , vol.36 , Issue.4 , pp. 1165-1188
    • Chen, H.1    Chiang, R.H.2    Storey, V.C.3
  • 32
    • 84939252149 scopus 로고    scopus 로고
    • Techniques to reduce cluttering of rdf visualizations
    • [32] Graves, A., Techniques to reduce cluttering of rdf visualizations. Future Gener. Comput. Syst. 53 (2015), 152–156.
    • (2015) Future Gener. Comput. Syst. , vol.53 , pp. 152-156
    • Graves, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.