-
1
-
-
0034654011
-
Acetylation: a regulatory modification to rival phosphorylation?
-
Kouzarides T. Acetylation: a regulatory modification to rival phosphorylation?. EMBO J. 2000, 19:1176-1179.
-
(2000)
EMBO J.
, vol.19
, pp. 1176-1179
-
-
Kouzarides, T.1
-
2
-
-
0141719702
-
Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan
-
Howitz K.T., Bitterman K.J., Cohen H.Y., Lamming D.W., Lavu S., Wood J.G., Zipkin R.E., Chung P., Kisielewski A., Zhang L.L., Scherer B., Sinclair D.A. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 2003, 425:191-196.
-
(2003)
Nature
, vol.425
, pp. 191-196
-
-
Howitz, K.T.1
Bitterman, K.J.2
Cohen, H.Y.3
Lamming, D.W.4
Lavu, S.5
Wood, J.G.6
Zipkin, R.E.7
Chung, P.8
Kisielewski, A.9
Zhang, L.L.10
Scherer, B.11
Sinclair, D.A.12
-
4
-
-
34547924046
-
HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention
-
Yang X.J., Seto E. HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene 2007, 26:5310-5318.
-
(2007)
Oncogene
, vol.26
, pp. 5310-5318
-
-
Yang, X.J.1
Seto, E.2
-
5
-
-
1842578986
-
Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis
-
Gregoretti I.V., Lee Y.M., Goodson H.V. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J. Mol. Biol. 2004, 338:17-31.
-
(2004)
J. Mol. Biol.
, vol.338
, pp. 17-31
-
-
Gregoretti, I.V.1
Lee, Y.M.2
Goodson, H.V.3
-
6
-
-
1342264308
-
Mammalian SIRT1 represses forkhead transcription factors
-
Motta M.C., Divecha N., Lemieux M., Kamel C., Chen D., Gu W., Bultsma Y., McBurney M., Guarente L. Mammalian SIRT1 represses forkhead transcription factors. Cell 2004, 116:551-563.
-
(2004)
Cell
, vol.116
, pp. 551-563
-
-
Motta, M.C.1
Divecha, N.2
Lemieux, M.3
Kamel, C.4
Chen, D.5
Gu, W.6
Bultsma, Y.7
McBurney, M.8
Guarente, L.9
-
7
-
-
8844247034
-
Silent information regulator 2alpha, a longevity factor and class III histone deacetylase, is an essential endogenous apoptosis inhibitor in cardiac myocytes
-
Alcendor R.R., Kirshenbaum L.A., Imai S., Vatner S.F., Sadoshima J. Silent information regulator 2alpha, a longevity factor and class III histone deacetylase, is an essential endogenous apoptosis inhibitor in cardiac myocytes. Circ. Res. 2004, 95:971-980.
-
(2004)
Circ. Res.
, vol.95
, pp. 971-980
-
-
Alcendor, R.R.1
Kirshenbaum, L.A.2
Imai, S.3
Vatner, S.F.4
Sadoshima, J.5
-
8
-
-
84887020906
-
Dual control of mitochondrial biogenesis by sirtuin 1 and sirtuin 3
-
Brenmoehl J., Hoeflich A. Dual control of mitochondrial biogenesis by sirtuin 1 and sirtuin 3. Mitochondrion 2013, 13:755-761.
-
(2013)
Mitochondrion
, vol.13
, pp. 755-761
-
-
Brenmoehl, J.1
Hoeflich, A.2
-
9
-
-
63449112017
-
Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation
-
Purushotham A., Schug T.T., Xu Q., Surapureddi S., Guo X., Li X. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab. 2009, 9:327-338.
-
(2009)
Cell Metab.
, vol.9
, pp. 327-338
-
-
Purushotham, A.1
Schug, T.T.2
Xu, Q.3
Surapureddi, S.4
Guo, X.5
Li, X.6
-
10
-
-
77950806433
-
SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation
-
Hirschey M.D., Shimazu T., Goetzman E., Jing E., Schwer B., Lombard D.B., Grueter C.A., Harris C., Biddinger S., Ilkayeva O.R., Stevens R.D., Li Y., Saha A.K., Ruderman N.B., Bain J.R., Newgard C.B., Farese R.V., Alt F.W., Kahn C.R., Verdin E. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 2010, 464:121-125.
-
(2010)
Nature
, vol.464
, pp. 121-125
-
-
Hirschey, M.D.1
Shimazu, T.2
Goetzman, E.3
Jing, E.4
Schwer, B.5
Lombard, D.B.6
Grueter, C.A.7
Harris, C.8
Biddinger, S.9
Ilkayeva, O.R.10
Stevens, R.D.11
Li, Y.12
Saha, A.K.13
Ruderman, N.B.14
Bain, J.R.15
Newgard, C.B.16
Farese, R.V.17
Alt, F.W.18
Kahn, C.R.19
Verdin, E.20
more..
-
11
-
-
12144290563
-
Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase
-
Brunet A., Sweeney L.B., Sturgill J.F., Chua K.F., Greer P.L., Lin Y., Tran H., Ross S.E., Mostoslavsky R., Cohen H.Y., Hu L.S., Cheng H.L., Jedrychowski M.P., Gygi S.P., Sinclair D.A., Alt F.W., Greenberg M.E. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 2004, 303:2011-2015.
-
(2004)
Science
, vol.303
, pp. 2011-2015
-
-
Brunet, A.1
Sweeney, L.B.2
Sturgill, J.F.3
Chua, K.F.4
Greer, P.L.5
Lin, Y.6
Tran, H.7
Ross, S.E.8
Mostoslavsky, R.9
Cohen, H.Y.10
Hu, L.S.11
Cheng, H.L.12
Jedrychowski, M.P.13
Gygi, S.P.14
Sinclair, D.A.15
Alt, F.W.16
Greenberg, M.E.17
-
12
-
-
84907466059
-
Sirt3 attenuates hydrogen peroxide-induced oxidative stress through the preservation of mitochondrial function in HT22 cells
-
Dai S.H., Chen T., Wang Y.H., Zhu J., Luo P., Rao W., Yang Y.F., Fei Z., Jiang X.F. Sirt3 attenuates hydrogen peroxide-induced oxidative stress through the preservation of mitochondrial function in HT22 cells. Int. J. Mol. Med. 2014, 34:1159-1168.
-
(2014)
Int. J. Mol. Med.
, vol.34
, pp. 1159-1168
-
-
Dai, S.H.1
Chen, T.2
Wang, Y.H.3
Zhu, J.4
Luo, P.5
Rao, W.6
Yang, Y.F.7
Fei, Z.8
Jiang, X.F.9
-
13
-
-
84922629728
-
Sirtuin 7 in cell proliferation, stress and disease: rise of the seventh sirtuin!
-
Kiran S., Anwar T., Kiran M., Ramakrishna G. Sirtuin 7 in cell proliferation, stress and disease: rise of the seventh sirtuin!. Cell. Signal. 2015, 27:673-682.
-
(2015)
Cell. Signal.
, vol.27
, pp. 673-682
-
-
Kiran, S.1
Anwar, T.2
Kiran, M.3
Ramakrishna, G.4
-
14
-
-
84917733106
-
Sirtuin 6 protects the heart from hypoxic damage
-
Maksin-Matveev A., Kanfi Y., Hochhauser E., Isak A., Cohen H.Y., Shainberg A. Sirtuin 6 protects the heart from hypoxic damage. Exp. Cell Res. 2015, 330:81-90.
-
(2015)
Exp. Cell Res.
, vol.330
, pp. 81-90
-
-
Maksin-Matveev, A.1
Kanfi, Y.2
Hochhauser, E.3
Isak, A.4
Cohen, H.Y.5
Shainberg, A.6
-
15
-
-
25144454432
-
Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice
-
Moynihan K.A., Grimm A.A., Plueger M.M., Bernal-Mizrachi E., Ford E., Cras-Meneur C., Permutt M.A., Imai S. Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab. 2005, 2:105-117.
-
(2005)
Cell Metab.
, vol.2
, pp. 105-117
-
-
Moynihan, K.A.1
Grimm, A.A.2
Plueger, M.M.3
Bernal-Mizrachi, E.4
Ford, E.5
Cras-Meneur, C.6
Permutt, M.A.7
Imai, S.8
-
16
-
-
0035826271
-
Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans
-
Tissenbaum H.A., Guarente L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 2001, 410:227-230.
-
(2001)
Nature
, vol.410
, pp. 227-230
-
-
Tissenbaum, H.A.1
Guarente, L.2
-
17
-
-
80053134340
-
Regulation of Caenorhabditis elegans lifespan by sir-2.1 transgenes
-
Viswanathan M., Guarente L. Regulation of Caenorhabditis elegans lifespan by sir-2.1 transgenes. Nature 2011, 477:E1-E2.
-
(2011)
Nature
, vol.477
, pp. E1-E2
-
-
Viswanathan, M.1
Guarente, L.2
-
18
-
-
84858000209
-
The sirtuin SIRT6 regulates lifespan in male mice
-
Kanfi Y., Naiman S., Amir G., Peshti V., Zinman G., Nahum L., Bar-Joseph Z., Cohen H.Y. The sirtuin SIRT6 regulates lifespan in male mice. Nature 2012, 483:218-221.
-
(2012)
Nature
, vol.483
, pp. 218-221
-
-
Kanfi, Y.1
Naiman, S.2
Amir, G.3
Peshti, V.4
Zinman, G.5
Nahum, L.6
Bar-Joseph, Z.7
Cohen, H.Y.8
-
19
-
-
84883476818
-
Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH
-
Satoh A., Brace C.S., Rensing N., Cliften P., Wozniak D.F., Herzog E.D., Yamada K.A., Imai S. Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metab. 2013, 18:416-430.
-
(2013)
Cell Metab.
, vol.18
, pp. 416-430
-
-
Satoh, A.1
Brace, C.S.2
Rensing, N.3
Cliften, P.4
Wozniak, D.F.5
Herzog, E.D.6
Yamada, K.A.7
Imai, S.8
-
20
-
-
84887468471
-
Deacetylation by SIRT1 reprograms inflammation and cancer
-
Liu T.F., McCall C.E. Deacetylation by SIRT1 reprograms inflammation and cancer. Genes Cancer 2013, 4:135-147.
-
(2013)
Genes Cancer
, vol.4
, pp. 135-147
-
-
Liu, T.F.1
McCall, C.E.2
-
21
-
-
0018644035
-
MAR1-a regulator of the HMa and HMalpha loci in Saccharomyces cerevisiae
-
Klar A.J., Fogel S., Macleod K. MAR1-a regulator of the HMa and HMalpha loci in Saccharomyces cerevisiae. Genetics 1979, 93:37-50.
-
(1979)
Genetics
, vol.93
, pp. 37-50
-
-
Klar, A.J.1
Fogel, S.2
Macleod, K.3
-
22
-
-
0023340731
-
Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae
-
Rine J., Herskowitz I. Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae. Genetics 1987, 116:9-22.
-
(1987)
Genetics
, vol.116
, pp. 9-22
-
-
Rine, J.1
Herskowitz, I.2
-
23
-
-
0033600176
-
Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity
-
Frye R.A. Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem. Biophys. Res. Commun. 1999, 260:273-279.
-
(1999)
Biochem. Biophys. Res. Commun.
, vol.260
, pp. 273-279
-
-
Frye, R.A.1
-
24
-
-
0033598942
-
An enzymatic activity in the yeast Sir2 protein that is essential for gene silencing
-
Tanny J.C., Dowd G.J., Huang J., Hilz H., Moazed D. An enzymatic activity in the yeast Sir2 protein that is essential for gene silencing. Cell 1999, 99:735-745.
-
(1999)
Cell
, vol.99
, pp. 735-745
-
-
Tanny, J.C.1
Dowd, G.J.2
Huang, J.3
Hilz, H.4
Moazed, D.5
-
25
-
-
0034677535
-
Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase
-
Imai S., Armstrong C.M., Kaeberlein M., Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 2000, 403:795-800.
-
(2000)
Nature
, vol.403
, pp. 795-800
-
-
Imai, S.1
Armstrong, C.M.2
Kaeberlein, M.3
Guarente, L.4
-
26
-
-
0034705129
-
The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases
-
Landry J., Sutton A., Tafrov S.T., Heller R.C., Stebbins J., Pillus L., Sternglanz R. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc. Natl. Acad. Sci. U. S. A. 2000, 97:5807-5811.
-
(2000)
Proc. Natl. Acad. Sci. U. S. A.
, vol.97
, pp. 5807-5811
-
-
Landry, J.1
Sutton, A.2
Tafrov, S.T.3
Heller, R.C.4
Stebbins, J.5
Pillus, L.6
Sternglanz, R.7
-
27
-
-
12944283150
-
A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family
-
Smith J.S., Brachmann C.B., Celic I., Kenna M.A., Muhammad S., Starai V.J., Avalos J.L., Escalante-Semerena J.C., Grubmeyer C., Wolberger C., Boeke J.D. A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family. Proc. Natl. Acad. Sci. U. S. A. 2000, 97:6658-6663.
-
(2000)
Proc. Natl. Acad. Sci. U. S. A.
, vol.97
, pp. 6658-6663
-
-
Smith, J.S.1
Brachmann, C.B.2
Celic, I.3
Kenna, M.A.4
Muhammad, S.5
Starai, V.J.6
Avalos, J.L.7
Escalante-Semerena, J.C.8
Grubmeyer, C.9
Wolberger, C.10
Boeke, J.D.11
-
28
-
-
0035895275
-
Coupling of histone deacetylation to NAD breakdown by the yeast silencing protein Sir2: evidence for acetyl transfer from substrate to an NAD breakdown product
-
Tanny J.C., Moazed D. Coupling of histone deacetylation to NAD breakdown by the yeast silencing protein Sir2: evidence for acetyl transfer from substrate to an NAD breakdown product. Proc. Natl. Acad. Sci. U. S. A. 2001, 98:415-420.
-
(2001)
Proc. Natl. Acad. Sci. U. S. A.
, vol.98
, pp. 415-420
-
-
Tanny, J.C.1
Moazed, D.2
-
29
-
-
0034193776
-
Sir2 links chromatin silencing, metabolism, and aging
-
Guarente L. Sir2 links chromatin silencing, metabolism, and aging. Genes Dev. 2000, 14:1021-1026.
-
(2000)
Genes Dev.
, vol.14
, pp. 1021-1026
-
-
Guarente, L.1
-
30
-
-
30044443515
-
Poly(ADP-ribose) polymerase-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+ depletion and reduced Sir2alpha deacetylase activity
-
Pillai J.B., Isbatan A., Imai S., Gupta M.P. Poly(ADP-ribose) polymerase-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+ depletion and reduced Sir2alpha deacetylase activity. J. Biol. Chem. 2005, 280:43121-43130.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 43121-43130
-
-
Pillai, J.B.1
Isbatan, A.2
Imai, S.3
Gupta, M.P.4
-
31
-
-
62649156291
-
Nampt: linking NAD biology, metabolism and cancer
-
Garten A., Petzold S., Korner A., Imai S., Kiess W. Nampt: linking NAD biology, metabolism and cancer. Trends Endocrinol. Metab. 2009, 20:130-138.
-
(2009)
Trends Endocrinol. Metab.
, vol.20
, pp. 130-138
-
-
Garten, A.1
Petzold, S.2
Korner, A.3
Imai, S.4
Kiess, W.5
-
32
-
-
0037160097
-
Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1
-
Bitterman K.J., Anderson R.M., Cohen H.Y., Latorre-Esteves M., Sinclair D.A. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J. Biol. Chem. 2002, 277:45099-45107.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 45099-45107
-
-
Bitterman, K.J.1
Anderson, R.M.2
Cohen, H.Y.3
Latorre-Esteves, M.4
Sinclair, D.A.5
-
33
-
-
1642580758
-
Nicotinamide clearance by Pnc1 directly regulates Sir2-mediated silencing and longevity
-
Gallo C.M., Smith D.L., Smith J.S. Nicotinamide clearance by Pnc1 directly regulates Sir2-mediated silencing and longevity. Mol. Cell. Biol. 2004, 24:1301-1312.
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 1301-1312
-
-
Gallo, C.M.1
Smith, D.L.2
Smith, J.S.3
-
34
-
-
0037066738
-
Conserved enzymatic production and biological effect of O-acetyl-ADP-ribose by silent information regulator 2-like NAD+-dependent deacetylases
-
Borra M.T., O'Neill F.J., Jackson M.D., Marshall B., Verdin E., Foltz K.R., Denu J.M. Conserved enzymatic production and biological effect of O-acetyl-ADP-ribose by silent information regulator 2-like NAD+-dependent deacetylases. J. Biol. Chem. 2002, 277:12632-12641.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 12632-12641
-
-
Borra, M.T.1
O'Neill, F.J.2
Jackson, M.D.3
Marshall, B.4
Verdin, E.5
Foltz, K.R.6
Denu, J.M.7
-
35
-
-
0037033021
-
Analysis of O-acetyl-ADP-ribose as a target for Nudix ADP-ribose hydrolases
-
Rafty L.A., Schmidt M.T., Perraud A.L., Scharenberg A.M., Denu J.M. Analysis of O-acetyl-ADP-ribose as a target for Nudix ADP-ribose hydrolases. J. Biol. Chem. 2002, 277:47114-47122.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 47114-47122
-
-
Rafty, L.A.1
Schmidt, M.T.2
Perraud, A.L.3
Scharenberg, A.M.4
Denu, J.M.5
-
36
-
-
77953289374
-
Function and metabolism of sirtuin metabolite O-acetyl-ADP-ribose
-
Tong L., Denu J.M. Function and metabolism of sirtuin metabolite O-acetyl-ADP-ribose. Biochim. Biophys. Acta 2010, 1804:1617-1625.
-
(2010)
Biochim. Biophys. Acta
, vol.1804
, pp. 1617-1625
-
-
Tong, L.1
Denu, J.M.2
-
37
-
-
19344377042
-
Assembly of the SIR complex and its regulation by O-acetyl-ADP-ribose, a product of NAD-dependent histone deacetylation
-
Liou G.G., Tanny J.C., Kruger R.G., Walz T., Moazed D. Assembly of the SIR complex and its regulation by O-acetyl-ADP-ribose, a product of NAD-dependent histone deacetylation. Cell 2005, 121:515-527.
-
(2005)
Cell
, vol.121
, pp. 515-527
-
-
Liou, G.G.1
Tanny, J.C.2
Kruger, R.G.3
Walz, T.4
Moazed, D.5
-
38
-
-
79953890881
-
Identification of macrodomain proteins as novel O-acetyl-ADP-ribose deacetylases
-
Chen D., Vollmar M., Rossi M.N., Phillips C., Kraehenbuehl R., Slade D., Mehrotra P.V., von Delft F., Crosthwaite S.K., Gileadi O., Denu J.M., Ahel I. Identification of macrodomain proteins as novel O-acetyl-ADP-ribose deacetylases. J. Biol. Chem. 2011, 286:13261-13271.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 13261-13271
-
-
Chen, D.1
Vollmar, M.2
Rossi, M.N.3
Phillips, C.4
Kraehenbuehl, R.5
Slade, D.6
Mehrotra, P.V.7
von Delft, F.8
Crosthwaite, S.K.9
Gileadi, O.10
Denu, J.M.11
Ahel, I.12
-
39
-
-
0028841317
-
The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability
-
Brachmann C.B., Sherman J.M., Devine S.E., Cameron E.E., Pillus L., Boeke J.D. The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. Genes Dev. 1995, 9:2888-2902.
-
(1995)
Genes Dev.
, vol.9
, pp. 2888-2902
-
-
Brachmann, C.B.1
Sherman, J.M.2
Devine, S.E.3
Cameron, E.E.4
Pillus, L.5
Boeke, J.D.6
-
40
-
-
0033610894
-
CobB, a new member of the SIR2 family of eucaryotic regulatory proteins, is required to compensate for the lack of nicotinate mononucleotide:5,6-dimethylbenzimidazole phosphoribosyltransferase activity in cobT mutants during cobalamin biosynthesis in Salmonella typhimurium LT2
-
Tsang A.W., Escalante-Semerena J.C. CobB, a new member of the SIR2 family of eucaryotic regulatory proteins, is required to compensate for the lack of nicotinate mononucleotide:5,6-dimethylbenzimidazole phosphoribosyltransferase activity in cobT mutants during cobalamin biosynthesis in Salmonella typhimurium LT2. J. Biol. Chem. 1998, 273:31788-31794.
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 31788-31794
-
-
Tsang, A.W.1
Escalante-Semerena, J.C.2
-
41
-
-
0347457075
-
Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine
-
Starai V.J., Celic I., Cole R.N., Boeke J.D., Escalante-Semerena J.C. Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine. Science 2002, 298:2390-2392.
-
(2002)
Science
, vol.298
, pp. 2390-2392
-
-
Starai, V.J.1
Celic, I.2
Cole, R.N.3
Boeke, J.D.4
Escalante-Semerena, J.C.5
-
42
-
-
77952826169
-
CobB regulates Escherichia coli chemotaxis by deacetylating the response regulator CheY
-
Li R., Gu J., Chen Y.Y., Xiao C.L., Wang L.W., Zhang Z.P., Bi L.J., Wei H.P., Wang X.D., Deng J.Y., Zhang X.E. CobB regulates Escherichia coli chemotaxis by deacetylating the response regulator CheY. Mol. Microbiol. 2010, 76:1162-1174.
-
(2010)
Mol. Microbiol.
, vol.76
, pp. 1162-1174
-
-
Li, R.1
Gu, J.2
Chen, Y.Y.3
Xiao, C.L.4
Wang, L.W.5
Zhang, Z.P.6
Bi, L.J.7
Wei, H.P.8
Wang, X.D.9
Deng, J.Y.10
Zhang, X.E.11
-
43
-
-
79960318555
-
Protein acetylation in prokaryotes increases stress resistance
-
Ma Q., Wood T.K. Protein acetylation in prokaryotes increases stress resistance. Biochem. Biophys. Res. Commun. 2011, 410:846-851.
-
(2011)
Biochem. Biophys. Res. Commun.
, vol.410
, pp. 846-851
-
-
Ma, Q.1
Wood, T.K.2
-
44
-
-
0037023326
-
The interaction of Alba, a conserved archaeal chromatin protein, with Sir2 and its regulation by acetylation
-
Bell S.D., Botting C.H., Wardleworth B.N., Jackson S.P., White M.F. The interaction of Alba, a conserved archaeal chromatin protein, with Sir2 and its regulation by acetylation. Science 2002, 296:148-151.
-
(2002)
Science
, vol.296
, pp. 148-151
-
-
Bell, S.D.1
Botting, C.H.2
Wardleworth, B.N.3
Jackson, S.P.4
White, M.F.5
-
45
-
-
0035917536
-
Crystal structure of a SIR2 homolog-NAD complex
-
Min J., Landry J., Sternglanz R., Xu R.M. Crystal structure of a SIR2 homolog-NAD complex. Cell 2001, 105:269-279.
-
(2001)
Cell
, vol.105
, pp. 269-279
-
-
Min, J.1
Landry, J.2
Sternglanz, R.3
Xu, R.M.4
-
47
-
-
77953289094
-
Structural basis for sirtuin function: what we know and what we don't
-
Sanders B.D., Jackson B., Marmorstein R. Structural basis for sirtuin function: what we know and what we don't. Biochim. Biophys. Acta 2010, 1804:1604-1616.
-
(2010)
Biochim. Biophys. Acta
, vol.1804
, pp. 1604-1616
-
-
Sanders, B.D.1
Jackson, B.2
Marmorstein, R.3
-
48
-
-
0033887456
-
Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins
-
Frye R.A. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem. Biophys. Res. Commun. 2000, 273:793-798.
-
(2000)
Biochem. Biophys. Res. Commun.
, vol.273
, pp. 793-798
-
-
Frye, R.A.1
-
49
-
-
26244436281
-
Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins
-
Michishita E., Park J.Y., Burneskis J.M., Barrett J.C., Horikawa I. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol. Biol. Cell 2005, 16:4623-4635.
-
(2005)
Mol. Biol. Cell
, vol.16
, pp. 4623-4635
-
-
Michishita, E.1
Park, J.Y.2
Burneskis, J.M.3
Barrett, J.C.4
Horikawa, I.5
-
50
-
-
20444409132
-
Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase
-
Liszt G., Ford E., Kurtev M., Guarente L. Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. J. Biol. Chem. 2005, 280:21313-21320.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 21313-21320
-
-
Liszt, G.1
Ford, E.2
Kurtev, M.3
Guarente, L.4
-
51
-
-
41349090663
-
SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin
-
Michishita E., McCord R.A., Berber E., Kioi M., Padilla-Nash H., Damian M., Cheung P., Kusumoto R., Kawahara T.L., Barrett J.C., Chang H.Y., Bohr V.A., Ried T., Gozani O., Chua K.F. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 2008, 452:492-496.
-
(2008)
Nature
, vol.452
, pp. 492-496
-
-
Michishita, E.1
McCord, R.A.2
Berber, E.3
Kioi, M.4
Padilla-Nash, H.5
Damian, M.6
Cheung, P.7
Kusumoto, R.8
Kawahara, T.L.9
Barrett, J.C.10
Chang, H.Y.11
Bohr, V.A.12
Ried, T.13
Gozani, O.14
Chua, K.F.15
-
52
-
-
81055122671
-
Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase
-
Du J., Zhou Y., Su X., Yu J.J., Khan S., Jiang H., Kim J., Woo J., Kim J.H., Choi B.H., He B., Chen W., Zhang S., Cerione R.A., Auwerx J., Hao Q., Lin H. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 2011, 334:806-809.
-
(2011)
Science
, vol.334
, pp. 806-809
-
-
Du, J.1
Zhou, Y.2
Su, X.3
Yu, J.J.4
Khan, S.5
Jiang, H.6
Kim, J.7
Woo, J.8
Kim, J.H.9
Choi, B.H.10
He, B.11
Chen, W.12
Zhang, S.13
Cerione, R.A.14
Auwerx, J.15
Hao, Q.16
Lin, H.17
-
53
-
-
33748316536
-
SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells
-
Haigis M.C., Mostoslavsky R., Haigis K.M., Fahie K., Christodoulou D.C., Murphy A.J., Valenzuela D.M., Yancopoulos G.D., Karow M., Blander G., Wolberger C., Prolla T.A., Weindruch R., Alt F.W., Guarente L. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 2006, 126:941-954.
-
(2006)
Cell
, vol.126
, pp. 941-954
-
-
Haigis, M.C.1
Mostoslavsky, R.2
Haigis, K.M.3
Fahie, K.4
Christodoulou, D.C.5
Murphy, A.J.6
Valenzuela, D.M.7
Yancopoulos, G.D.8
Karow, M.9
Blander, G.10
Wolberger, C.11
Prolla, T.A.12
Weindruch, R.13
Alt, F.W.14
Guarente, L.15
-
54
-
-
4944245398
-
Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin
-
Vaquero A., Scher M., Lee D., Erdjument-Bromage H., Tempst P., Reinberg D. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol. Cell 2004, 16:93-105.
-
(2004)
Mol. Cell
, vol.16
, pp. 93-105
-
-
Vaquero, A.1
Scher, M.2
Lee, D.3
Erdjument-Bromage, H.4
Tempst, P.5
Reinberg, D.6
-
55
-
-
34547875013
-
NAD+-dependent deacetylation of H4 lysine 16 by class III HDACs
-
Vaquero A., Sternglanz R., Reinberg D. NAD+-dependent deacetylation of H4 lysine 16 by class III HDACs. Oncogene 2007, 26:5505-5520.
-
(2007)
Oncogene
, vol.26
, pp. 5505-5520
-
-
Vaquero, A.1
Sternglanz, R.2
Reinberg, D.3
-
56
-
-
0035913903
-
HSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase
-
Vaziri H., Dessain S.K., Ng Eaton E., Imai S.I., Frye R.A., Pandita T.K., Guarente L., Weinberg R.A. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 2001, 107:149-159.
-
(2001)
Cell
, vol.107
, pp. 149-159
-
-
Vaziri, H.1
Dessain, S.K.2
Ng Eaton, E.3
Imai, S.I.4
Frye, R.A.5
Pandita, T.K.6
Guarente, L.7
Weinberg, R.A.8
-
57
-
-
84880160092
-
Antagonistic crosstalk between NF-kappaB and SIRT1 in the regulation of inflammation and metabolic disorders
-
Kauppinen A., Suuronen T., Ojala J., Kaarniranta K., Salminen A. Antagonistic crosstalk between NF-kappaB and SIRT1 in the regulation of inflammation and metabolic disorders. Cell. Signal. 2013, 25:1939-1948.
-
(2013)
Cell. Signal.
, vol.25
, pp. 1939-1948
-
-
Kauppinen, A.1
Suuronen, T.2
Ojala, J.3
Kaarniranta, K.4
Salminen, A.5
-
58
-
-
3142742707
-
FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2(SIRT1)
-
van der Horst A., Tertoolen L.G., de Vries-Smits L.M., Frye R.A., Medema R.H., Burgering B.M. FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2(SIRT1). J. Biol. Chem. 2004, 279:28873-28879.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 28873-28879
-
-
van der Horst, A.1
Tertoolen, L.G.2
de Vries-Smits, L.M.3
Frye, R.A.4
Medema, R.H.5
Burgering, B.M.6
-
59
-
-
18144411313
-
SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha}
-
Nemoto S., Fergusson M.M., Finkel T. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha}. J. Biol. Chem. 2005, 280:16456-16460.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 16456-16460
-
-
Nemoto, S.1
Fergusson, M.M.2
Finkel, T.3
-
60
-
-
77955499804
-
Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha
-
Lim J.H., Lee Y.M., Chun Y.S., Chen J., Kim J.E., Park J.W. Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha. Mol. Cell 2010, 38:864-878.
-
(2010)
Mol. Cell
, vol.38
, pp. 864-878
-
-
Lim, J.H.1
Lee, Y.M.2
Chun, Y.S.3
Chen, J.4
Kim, J.E.5
Park, J.W.6
-
61
-
-
66749129781
-
Regulation of hypoxia-inducible factor 2alpha signaling by the stress-responsive deacetylase sirtuin 1
-
Dioum E.M., Chen R., Alexander M.S., Zhang Q., Hogg R.T., Gerard R.D., Garcia J.A. Regulation of hypoxia-inducible factor 2alpha signaling by the stress-responsive deacetylase sirtuin 1. Science 2009, 324:1289-1293.
-
(2009)
Science
, vol.324
, pp. 1289-1293
-
-
Dioum, E.M.1
Chen, R.2
Alexander, M.S.3
Zhang, Q.4
Hogg, R.T.5
Gerard, R.D.6
Garcia, J.A.7
-
62
-
-
0242322010
-
Involvement of the histone deacetylase SIRT1 in chicken ovalbumin upstream promoter transcription factor (COUP-TF)-interacting protein 2-mediated transcriptional repression
-
Senawong T., Peterson V.J., Avram D., Shepherd D.M., Frye R.A., Minucci S., Leid M. Involvement of the histone deacetylase SIRT1 in chicken ovalbumin upstream promoter transcription factor (COUP-TF)-interacting protein 2-mediated transcriptional repression. J. Biol. Chem. 2003, 278:43041-43050.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 43041-43050
-
-
Senawong, T.1
Peterson, V.J.2
Avram, D.3
Shepherd, D.M.4
Frye, R.A.5
Minucci, S.6
Leid, M.7
-
63
-
-
20144372893
-
SIRT1 regulates HIV transcription via Tat deacetylation
-
Pagans S., Pedal A., North B.J., Kaehlcke K., Marshall B.L., Dorr A., Hetzer-Egger C., Henklein P., Frye R., McBurney M.W., Hruby H., Jung M., Verdin E., Ott M. SIRT1 regulates HIV transcription via Tat deacetylation. PLoS Biol. 2005, 3.
-
(2005)
PLoS Biol.
, vol.3
-
-
Pagans, S.1
Pedal, A.2
North, B.J.3
Kaehlcke, K.4
Marshall, B.L.5
Dorr, A.6
Hetzer-Egger, C.7
Henklein, P.8
Frye, R.9
McBurney, M.W.10
Hruby, H.11
Jung, M.12
Verdin, E.13
Ott, M.14
-
64
-
-
77958595135
-
SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism
-
Ponugoti B., Kim D.H., Xiao Z., Smith Z., Miao J., Zang M., Wu S.Y., Chiang C.M., Veenstra T.D., Kemper J.K. SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism. J. Biol. Chem. 2010, 285:33959-33970.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 33959-33970
-
-
Ponugoti, B.1
Kim, D.H.2
Xiao, Z.3
Smith, Z.4
Miao, J.5
Zang, M.6
Wu, S.Y.7
Chiang, C.M.8
Veenstra, T.D.9
Kemper, J.K.10
-
65
-
-
34948883324
-
SIRT1 deacetylates and positively regulates the nuclear receptor LXR
-
Li X., Zhang S., Blander G., Tse J.G., Krieger M., Guarente L. SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol. Cell 2007, 28:91-106.
-
(2007)
Mol. Cell
, vol.28
, pp. 91-106
-
-
Li, X.1
Zhang, S.2
Blander, G.3
Tse, J.G.4
Krieger, M.5
Guarente, L.6
-
66
-
-
70350606061
-
FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states
-
Kemper J.K., Xiao Z., Ponugoti B., Miao J., Fang S., Kanamaluru D., Tsang S., Wu S.Y., Chiang C.M., Veenstra T.D. FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states. Cell Metab. 2009, 10:392-404.
-
(2009)
Cell Metab.
, vol.10
, pp. 392-404
-
-
Kemper, J.K.1
Xiao, Z.2
Ponugoti, B.3
Miao, J.4
Fang, S.5
Kanamaluru, D.6
Tsang, S.7
Wu, S.Y.8
Chiang, C.M.9
Veenstra, T.D.10
-
67
-
-
35549008884
-
SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase
-
Mattagajasingh I., Kim C.S., Naqvi A., Yamamori T., Hoffman T.A., Jung S.B., DeRicco J., Kasuno K., Irani K. SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc. Natl. Acad. Sci. U. S. A. 2007, 104:14855-14860.
-
(2007)
Proc. Natl. Acad. Sci. U. S. A.
, vol.104
, pp. 14855-14860
-
-
Mattagajasingh, I.1
Kim, C.S.2
Naqvi, A.3
Yamamori, T.4
Hoffman, T.A.5
Jung, S.B.6
DeRicco, J.7
Kasuno, K.8
Irani, K.9
-
68
-
-
25444462980
-
Regulation of MEF2 by histone deacetylase 4- and SIRT1 deacetylase-mediated lysine modifications
-
Zhao X., Sternsdorf T., Bolger T.A., Evans R.M., Yao T.P. Regulation of MEF2 by histone deacetylase 4- and SIRT1 deacetylase-mediated lysine modifications. Mol. Cell. Biol. 2005, 25:8456-8464.
-
(2005)
Mol. Cell. Biol.
, vol.25
, pp. 8456-8464
-
-
Zhao, X.1
Sternsdorf, T.2
Bolger, T.A.3
Evans, R.M.4
Yao, T.P.5
-
69
-
-
79955926985
-
Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase
-
Guarani V., Deflorian G., Franco C.A., Kruger M., Phng L.K., Bentley K., Toussaint L., Dequiedt F., Mostoslavsky R., Schmidt M.H., Zimmermann B., Brandes R.P., Mione M., Westphal C.H., Braun T., Zeiher A.M., Gerhardt H., Dimmeler S., Potente M. Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase. Nature 2011, 473:234-238.
-
(2011)
Nature
, vol.473
, pp. 234-238
-
-
Guarani, V.1
Deflorian, G.2
Franco, C.A.3
Kruger, M.4
Phng, L.K.5
Bentley, K.6
Toussaint, L.7
Dequiedt, F.8
Mostoslavsky, R.9
Schmidt, M.H.10
Zimmermann, B.11
Brandes, R.P.12
Mione, M.13
Westphal, C.H.14
Braun, T.15
Zeiher, A.M.16
Gerhardt, H.17
Dimmeler, S.18
Potente, M.19
-
70
-
-
33847647624
-
SIRT1 promotes DNA repair activity and deacetylation of Ku70
-
Jeong J., Juhn K., Lee H., Kim S.H., Min B.H., Lee K.M., Cho M.H., Park G.H., Lee K.H. SIRT1 promotes DNA repair activity and deacetylation of Ku70. Exp. Mol. Med. 2007, 39:8-13.
-
(2007)
Exp. Mol. Med.
, vol.39
, pp. 8-13
-
-
Jeong, J.1
Juhn, K.2
Lee, H.3
Kim, S.H.4
Min, B.H.5
Lee, K.M.6
Cho, M.H.7
Park, G.H.8
Lee, K.H.9
-
71
-
-
77955501963
-
SIRT1 regulates UV-induced DNA repair through deacetylating XPA
-
Fan W., Luo J. SIRT1 regulates UV-induced DNA repair through deacetylating XPA. Mol. Cell 2010, 39:247-258.
-
(2010)
Mol. Cell
, vol.39
, pp. 247-258
-
-
Fan, W.1
Luo, J.2
-
72
-
-
43149118368
-
Regulation of WRN protein cellular localization and enzymatic activities by SIRT1-mediated deacetylation
-
Li K., Casta A., Wang R., Lozada E., Fan W., Kane S., Ge Q., Gu W., Orren D., Luo J. Regulation of WRN protein cellular localization and enzymatic activities by SIRT1-mediated deacetylation. J. Biol. Chem. 2008, 283:7590-7598.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 7590-7598
-
-
Li, K.1
Casta, A.2
Wang, R.3
Lozada, E.4
Fan, W.5
Kane, S.6
Ge, Q.7
Gu, W.8
Orren, D.9
Luo, J.10
-
73
-
-
37549016377
-
A functional link between SIRT1 deacetylase and NBS1 in DNA damage response
-
Yuan Z., Seto E. A functional link between SIRT1 deacetylase and NBS1 in DNA damage response. Cell Cycle 2007, 6:2869-2871.
-
(2007)
Cell Cycle
, vol.6
, pp. 2869-2871
-
-
Yuan, Z.1
Seto, E.2
-
74
-
-
79952537492
-
Nicotinamide phosphoribosyltransferase protects against ischemic stroke through SIRT1-dependent adenosine monophosphate-activated kinase pathway
-
Wang P., Xu T.Y., Guan Y.F., Tian W.W., Viollet B., Rui Y.C., Zhai Q.W., Su D.F., Miao C.Y. Nicotinamide phosphoribosyltransferase protects against ischemic stroke through SIRT1-dependent adenosine monophosphate-activated kinase pathway. Ann. Neurol. 2011, 69:360-374.
-
(2011)
Ann. Neurol.
, vol.69
, pp. 360-374
-
-
Wang, P.1
Xu, T.Y.2
Guan, Y.F.3
Tian, W.W.4
Viollet, B.5
Rui, Y.C.6
Zhai, Q.W.7
Su, D.F.8
Miao, C.Y.9
-
75
-
-
33745931074
-
Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases
-
Hallows W.C., Lee S., Denu J.M. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc. Natl. Acad. Sci. U. S. A. 2006, 103:10230-10235.
-
(2006)
Proc. Natl. Acad. Sci. U. S. A.
, vol.103
, pp. 10230-10235
-
-
Hallows, W.C.1
Lee, S.2
Denu, J.M.3
-
76
-
-
81055127044
-
SIRT1 and SIRT3 deacetylate homologous substrates: AceCS1,2 and HMGCS1,2
-
Hirschey M.D., Shimazu T., Capra J.A., Pollard K.S., Verdin E. SIRT1 and SIRT3 deacetylate homologous substrates: AceCS1,2 and HMGCS1,2. Aging 2011, 3:635-642.
-
(2011)
Aging
, vol.3
, pp. 635-642
-
-
Hirschey, M.D.1
Shimazu, T.2
Capra, J.A.3
Pollard, K.S.4
Verdin, E.5
-
77
-
-
80053377582
-
Sirt1 deacetylates c-Myc and promotes c-Myc/Max association
-
Mao B., Zhao G., Lv X., Chen H.Z., Xue Z., Yang B., Liu D.P., Liang C.C. Sirt1 deacetylates c-Myc and promotes c-Myc/Max association. Int. J. Biochem. Cell Biol. 2011, 43:1573-1581.
-
(2011)
Int. J. Biochem. Cell Biol.
, vol.43
, pp. 1573-1581
-
-
Mao, B.1
Zhao, G.2
Lv, X.3
Chen, H.Z.4
Xue, Z.5
Yang, B.6
Liu, D.P.7
Liang, C.C.8
-
78
-
-
33750367457
-
Hormonal control of androgen receptor function through SIRT1
-
Fu M., Liu M., Sauve A.A., Jiao X., Zhang X., Wu X., Powell M.J., Yang T., Gu W., Avantaggiati M.L., Pattabiraman N., Pestell T.G., Wang F., Quong A.A., Wang C., Pestell R.G. Hormonal control of androgen receptor function through SIRT1. Mol. Cell. Biol. 2006, 26:8122-8135.
-
(2006)
Mol. Cell. Biol.
, vol.26
, pp. 8122-8135
-
-
Fu, M.1
Liu, M.2
Sauve, A.A.3
Jiao, X.4
Zhang, X.5
Wu, X.6
Powell, M.J.7
Yang, T.8
Gu, W.9
Avantaggiati, M.L.10
Pattabiraman, N.11
Pestell, T.G.12
Wang, F.13
Quong, A.A.14
Wang, C.15
Pestell, R.G.16
-
79
-
-
36248954501
-
SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation
-
Vaquero A., Scher M., Erdjument-Bromage H., Tempst P., Serrano L., Reinberg D. SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation. Nature 2007, 450:440-444.
-
(2007)
Nature
, vol.450
, pp. 440-444
-
-
Vaquero, A.1
Scher, M.2
Erdjument-Bromage, H.3
Tempst, P.4
Serrano, L.5
Reinberg, D.6
-
80
-
-
47549088250
-
The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control
-
Nakahata Y., Kaluzova M., Grimaldi B., Sahar S., Hirayama J., Chen D., Guarente L.P., Sassone-Corsi P. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 2008, 134:329-340.
-
(2008)
Cell
, vol.134
, pp. 329-340
-
-
Nakahata, Y.1
Kaluzova, M.2
Grimaldi, B.3
Sahar, S.4
Hirayama, J.5
Chen, D.6
Guarente, L.P.7
Sassone-Corsi, P.8
-
81
-
-
47749140333
-
SIRT1 regulates circadian clock gene expression through PER2 deacetylation
-
Asher G., Gatfield D., Stratmann M., Reinke H., Dibner C., Kreppel F., Mostoslavsky R., Alt F.W., Schibler U. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 2008, 134:317-328.
-
(2008)
Cell
, vol.134
, pp. 317-328
-
-
Asher, G.1
Gatfield, D.2
Stratmann, M.3
Reinke, H.4
Dibner, C.5
Kreppel, F.6
Mostoslavsky, R.7
Alt, F.W.8
Schibler, U.9
-
82
-
-
83255186739
-
SIRT1 deacetylates the DNA methyltransferase 1 (DNMT1) protein and alters its activities
-
Peng L., Yuan Z., Ling H., Fukasawa K., Robertson K., Olashaw N., Koomen J., Chen J., Lane W.S., Seto E. SIRT1 deacetylates the DNA methyltransferase 1 (DNMT1) protein and alters its activities. Mol. Cell. Biol. 2011, 31:4720-4734.
-
(2011)
Mol. Cell. Biol.
, vol.31
, pp. 4720-4734
-
-
Peng, L.1
Yuan, Z.2
Ling, H.3
Fukasawa, K.4
Robertson, K.5
Olashaw, N.6
Koomen, J.7
Chen, J.8
Lane, W.S.9
Seto, E.10
-
83
-
-
84864020743
-
SIRT1 negatively regulates the activities, functions, and protein levels of hMOF and TIP60
-
Peng L., Ling H., Yuan Z., Fang B., Bloom G., Fukasawa K., Koomen J., Chen J., Lane W.S., Seto E. SIRT1 negatively regulates the activities, functions, and protein levels of hMOF and TIP60. Mol. Cell. Biol. 2012, 32:2823-2836.
-
(2012)
Mol. Cell. Biol.
, vol.32
, pp. 2823-2836
-
-
Peng, L.1
Ling, H.2
Yuan, Z.3
Fang, B.4
Bloom, G.5
Fukasawa, K.6
Koomen, J.7
Chen, J.8
Lane, W.S.9
Seto, E.10
-
84
-
-
59649126261
-
Deacetylation of cortactin by SIRT1 promotes cell migration
-
Zhang Y., Zhang M., Dong H., Yong S., Li X., Olashaw N., Kruk P.A., Cheng J.Q., Bai W., Chen J., Nicosia S.V., Zhang X. Deacetylation of cortactin by SIRT1 promotes cell migration. Oncogene 2009, 28:445-460.
-
(2009)
Oncogene
, vol.28
, pp. 445-460
-
-
Zhang, Y.1
Zhang, M.2
Dong, H.3
Yong, S.4
Li, X.5
Olashaw, N.6
Kruk, P.A.7
Cheng, J.Q.8
Bai, W.9
Chen, J.10
Nicosia, S.V.11
Zhang, X.12
-
85
-
-
67651210858
-
SIRT1 promotes cell survival under stress by deacetylation-dependent deactivation of poly(ADP-ribose) polymerase 1
-
Rajamohan S.B., Pillai V.B., Gupta M., Sundaresan N.R., Birukov K.G., Samant S., Hottiger M.O., Gupta M.P. SIRT1 promotes cell survival under stress by deacetylation-dependent deactivation of poly(ADP-ribose) polymerase 1. Mol. Cell. Biol. 2009, 29:4116-4129.
-
(2009)
Mol. Cell. Biol.
, vol.29
, pp. 4116-4129
-
-
Rajamohan, S.B.1
Pillai, V.B.2
Gupta, M.3
Sundaresan, N.R.4
Birukov, K.G.5
Samant, S.6
Hottiger, M.O.7
Gupta, M.P.8
-
86
-
-
84862233585
-
SIRT1 deacetylates SATB1 to facilitate MAR HS2-MAR epsilon interaction and promote epsilon-globin expression
-
Xue Z., Lv X., Song W., Wang X., Zhao G.N., Wang W.T., Xiong J., Mao B.B., Yu W., Yang B., Wu J., Zhou L.Q., Hao D.L., Dong W.J., Liu D.P., Liang C.C. SIRT1 deacetylates SATB1 to facilitate MAR HS2-MAR epsilon interaction and promote epsilon-globin expression. Nucleic Acids Res. 2012, 40:4804-4815.
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. 4804-4815
-
-
Xue, Z.1
Lv, X.2
Song, W.3
Wang, X.4
Zhao, G.N.5
Wang, W.T.6
Xiong, J.7
Mao, B.B.8
Yu, W.9
Yang, B.10
Wu, J.11
Zhou, L.Q.12
Hao, D.L.13
Dong, W.J.14
Liu, D.P.15
Liang, C.C.16
-
87
-
-
84869209249
-
SIRT1 deacetylates RFX5 and antagonizes repression of collagen type I (COL1A2) transcription in smooth muscle cells
-
Xia J., Wu X., Yang Y., Zhao Y., Fang M., Xie W., Wang H., Xu Y. SIRT1 deacetylates RFX5 and antagonizes repression of collagen type I (COL1A2) transcription in smooth muscle cells. Biochem. Biophys. Res. Commun. 2012, 428:264-270.
-
(2012)
Biochem. Biophys. Res. Commun.
, vol.428
, pp. 264-270
-
-
Xia, J.1
Wu, X.2
Yang, Y.3
Zhao, Y.4
Fang, M.5
Xie, W.6
Wang, H.7
Xu, Y.8
-
88
-
-
84886551415
-
Histone deacetylase SIRT1 modulates and deacetylates DNA base excision repair enzyme thymine DNA glycosylase
-
Madabushi A., Hwang B.J., Jin J., Lu A.L. Histone deacetylase SIRT1 modulates and deacetylates DNA base excision repair enzyme thymine DNA glycosylase. Biochem. J. 2013, 456:89-98.
-
(2013)
Biochem. J.
, vol.456
, pp. 89-98
-
-
Madabushi, A.1
Hwang, B.J.2
Jin, J.3
Lu, A.L.4
-
89
-
-
84884581542
-
SIRT1 deacetylates FOXA2 and is critical for Pdx1 transcription and beta-cell formation
-
Wang R.H., Xu X., Kim H.S., Xiao Z., Deng C.X. SIRT1 deacetylates FOXA2 and is critical for Pdx1 transcription and beta-cell formation. Int. J. Biol. Sci. 2013, 9:934-946.
-
(2013)
Int. J. Biol. Sci.
, vol.9
, pp. 934-946
-
-
Wang, R.H.1
Xu, X.2
Kim, H.S.3
Xiao, Z.4
Deng, C.X.5
-
90
-
-
84891450164
-
Histone deacetylase sirtuin 1 deacetylates IRF1 protein and programs dendritic cells to control Th17 protein differentiation during autoimmune inflammation
-
Yang H., Lee S.M., Gao B., Zhang J., Fang D. Histone deacetylase sirtuin 1 deacetylates IRF1 protein and programs dendritic cells to control Th17 protein differentiation during autoimmune inflammation. J. Biol. Chem. 2013, 288:37256-37266.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 37256-37266
-
-
Yang, H.1
Lee, S.M.2
Gao, B.3
Zhang, J.4
Fang, D.5
-
91
-
-
84920288890
-
High-mobility group box 1 is a novel deacetylation target of Sirtuin1
-
Rabadi M.M., Xavier S., Vasko R., Kaur K., Goligorksy M.S., Ratliff B.B. High-mobility group box 1 is a novel deacetylation target of Sirtuin1. Kidney Int. 2015, 87:95-108.
-
(2015)
Kidney Int.
, vol.87
, pp. 95-108
-
-
Rabadi, M.M.1
Xavier, S.2
Vasko, R.3
Kaur, K.4
Goligorksy, M.S.5
Ratliff, B.B.6
-
92
-
-
84856742769
-
Regulation of glycolytic enzyme phosphoglycerate mutase-1 by Sirt1 protein-mediated deacetylation
-
Hallows W.C., Yu W., Denu J.M. Regulation of glycolytic enzyme phosphoglycerate mutase-1 by Sirt1 protein-mediated deacetylation. J. Biol. Chem. 2012, 287:3850-3858.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 3850-3858
-
-
Hallows, W.C.1
Yu, W.2
Denu, J.M.3
-
93
-
-
84907983116
-
SIRT1-mediated deacetylation of CRABPII regulates cellular retinoic acid signaling and modulates embryonic stem cell differentiation
-
Tang S., Huang G., Fan W., Chen Y., Ward J.M., Xu X., Xu Q., Kang A., McBurney M.W., Fargo D.C., Hu G., Baumgart-Vogt E., Zhao Y., Li X. SIRT1-mediated deacetylation of CRABPII regulates cellular retinoic acid signaling and modulates embryonic stem cell differentiation. Mol. Cell 2014, 55:843-855.
-
(2014)
Mol. Cell
, vol.55
, pp. 843-855
-
-
Tang, S.1
Huang, G.2
Fan, W.3
Chen, Y.4
Ward, J.M.5
Xu, X.6
Xu, Q.7
Kang, A.8
McBurney, M.W.9
Fargo, D.C.10
Hu, G.11
Baumgart-Vogt, E.12
Zhao, Y.13
Li, X.14
-
94
-
-
84916886805
-
SIRT1 deacetylates TopBP1 and modulates intra-S-phase checkpoint and DNA replication origin firing
-
Wang R.H., Lahusen T.J., Chen Q., Xu X., Jenkins L.M., Leo E., Fu H., Aladjem M., Pommier Y., Appella E., Deng C.X. SIRT1 deacetylates TopBP1 and modulates intra-S-phase checkpoint and DNA replication origin firing. Int. J. Biol. Sci. 2014, 10:1193-1202.
-
(2014)
Int. J. Biol. Sci.
, vol.10
, pp. 1193-1202
-
-
Wang, R.H.1
Lahusen, T.J.2
Chen, Q.3
Xu, X.4
Jenkins, L.M.5
Leo, E.6
Fu, H.7
Aladjem, M.8
Pommier, Y.9
Appella, E.10
Deng, C.X.11
-
95
-
-
84905442969
-
Deacetylation of the tumor suppressor protein PML regulates hydrogen peroxide-induced cell death
-
Guan D., Lim J.H., Peng L., Liu Y., Lam M., Seto E., Kao H.Y. Deacetylation of the tumor suppressor protein PML regulates hydrogen peroxide-induced cell death. Cell Death Dis. 2014, 5.
-
(2014)
Cell Death Dis.
, vol.5
-
-
Guan, D.1
Lim, J.H.2
Peng, L.3
Liu, Y.4
Lam, M.5
Seto, E.6
Kao, H.Y.7
-
96
-
-
33646550204
-
SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis
-
Vaquero A., Scher M.B., Lee D.H., Sutton A., Cheng H.L., Alt F.W., Serrano L., Sternglanz R., Reinberg D. SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes Dev. 2006, 20:1256-1261.
-
(2006)
Genes Dev.
, vol.20
, pp. 1256-1261
-
-
Vaquero, A.1
Scher, M.B.2
Lee, D.H.3
Sutton, A.4
Cheng, H.L.5
Alt, F.W.6
Serrano, L.7
Sternglanz, R.8
Reinberg, D.9
-
97
-
-
84881034102
-
A role for SIRT2-dependent histone H3K18 deacetylation in bacterial infection
-
Eskandarian H.A., Impens F., Nahori M.A., Soubigou G., Coppee J.Y., Cossart P., Hamon M.A. A role for SIRT2-dependent histone H3K18 deacetylation in bacterial infection. Science 2013, 341:1238858.
-
(2013)
Science
, vol.341
, pp. 1238858
-
-
Eskandarian, H.A.1
Impens, F.2
Nahori, M.A.3
Soubigou, G.4
Coppee, J.Y.5
Cossart, P.6
Hamon, M.A.7
-
98
-
-
0037291214
-
The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase
-
North B.J., Marshall B.L., Borra M.T., Denu J.M., Verdin E. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol. Cell 2003, 11:437-444.
-
(2003)
Mol. Cell
, vol.11
, pp. 437-444
-
-
North, B.J.1
Marshall, B.L.2
Borra, M.T.3
Denu, J.M.4
Verdin, E.5
-
99
-
-
64049089450
-
SIRT2 suppresses adipocyte differentiation by deacetylating FOXO1 and enhancing FOXO1's repressive interaction with PPARgamma
-
Wang F., Tong Q. SIRT2 suppresses adipocyte differentiation by deacetylating FOXO1 and enhancing FOXO1's repressive interaction with PPARgamma. Mol. Biol. Cell 2009, 20:801-808.
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 801-808
-
-
Wang, F.1
Tong, Q.2
-
100
-
-
34447626095
-
SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction
-
Wang F., Nguyen M., Qin F.X., Tong Q. SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction. Aging Cell 2007, 6:505-514.
-
(2007)
Aging Cell
, vol.6
, pp. 505-514
-
-
Wang, F.1
Nguyen, M.2
Qin, F.X.3
Tong, Q.4
-
101
-
-
39749143163
-
Sirt2 interacts with 14-3-3 beta/gamma and down-regulates the activity of p53
-
Jin Y.H., Kim Y.J., Kim D.W., Baek K.H., Kang B.Y., Yeo C.Y., Lee K.Y. Sirt2 interacts with 14-3-3 beta/gamma and down-regulates the activity of p53. Biochem. Biophys. Res. Commun. 2008, 368:690-695.
-
(2008)
Biochem. Biophys. Res. Commun.
, vol.368
, pp. 690-695
-
-
Jin, Y.H.1
Kim, Y.J.2
Kim, D.W.3
Baek, K.H.4
Kang, B.Y.5
Yeo, C.Y.6
Lee, K.Y.7
-
102
-
-
55049117907
-
The SIRT2 deacetylase regulates autoacetylation of p300
-
Black J.C., Mosley A., Kitada T., Washburn M., Carey M. The SIRT2 deacetylase regulates autoacetylation of p300. Mol. Cell 2008, 32:449-455.
-
(2008)
Mol. Cell
, vol.32
, pp. 449-455
-
-
Black, J.C.1
Mosley, A.2
Kitada, T.3
Washburn, M.4
Carey, M.5
-
103
-
-
78649738291
-
SIRT2 regulates NF-kappaB dependent gene expression through deacetylation of p65 Lys310
-
Rothgiesser K.M., Erener S., Waibel S., Luscher B., Hottiger M.O. SIRT2 regulates NF-kappaB dependent gene expression through deacetylation of p65 Lys310. J. Cell Sci. 2010, 123:4251-4258.
-
(2010)
J. Cell Sci.
, vol.123
, pp. 4251-4258
-
-
Rothgiesser, K.M.1
Erener, S.2
Waibel, S.3
Luscher, B.4
Hottiger, M.O.5
-
104
-
-
79959906869
-
Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase
-
Jiang W., Wang S., Xiao M., Lin Y., Zhou L., Lei Q., Xiong Y., Guan K.L., Zhao S. Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase. Mol. Cell 2011, 43:33-44.
-
(2011)
Mol. Cell
, vol.43
, pp. 33-44
-
-
Jiang, W.1
Wang, S.2
Xiao, M.3
Lin, Y.4
Zhou, L.5
Lei, Q.6
Xiong, Y.7
Guan, K.L.8
Zhao, S.9
-
105
-
-
80055085172
-
Sir-two-homolog 2 (Sirt2) modulates peripheral myelination through polarity protein Par-3/atypical protein kinase C (aPKC) signaling
-
Beirowski B., Gustin J., Armour S.M., Yamamoto H., Viader A., North B.J., Michan S., Baloh R.H., Golden J.P., Schmidt R.E., Sinclair D.A., Auwerx J., Milbrandt J. Sir-two-homolog 2 (Sirt2) modulates peripheral myelination through polarity protein Par-3/atypical protein kinase C (aPKC) signaling. Proc. Natl. Acad. Sci. U. S. A. 2011, 108:E952-E961.
-
(2011)
Proc. Natl. Acad. Sci. U. S. A.
, vol.108
, pp. E952-E961
-
-
Beirowski, B.1
Gustin, J.2
Armour, S.M.3
Yamamoto, H.4
Viader, A.5
North, B.J.6
Michan, S.7
Baloh, R.H.8
Golden, J.P.9
Schmidt, R.E.10
Sinclair, D.A.11
Auwerx, J.12
Milbrandt, J.13
-
106
-
-
84882418252
-
SIRT2 directs the replication stress response through CDK9 deacetylation
-
Zhang H., Park S.H., Pantazides B.G., Karpiuk O., Warren M.D., Hardy C.W., Duong D.M., Park S.J., Kim H.S., Vassilopoulos A., Seyfried N.T., Johnsen S.A., Gius D., Yu D.S. SIRT2 directs the replication stress response through CDK9 deacetylation. Proc. Natl. Acad. Sci. U. S. A. 2013, 110:13546-13551.
-
(2013)
Proc. Natl. Acad. Sci. U. S. A.
, vol.110
, pp. 13546-13551
-
-
Zhang, H.1
Park, S.H.2
Pantazides, B.G.3
Karpiuk, O.4
Warren, M.D.5
Hardy, C.W.6
Duong, D.M.7
Park, S.J.8
Kim, H.S.9
Vassilopoulos, A.10
Seyfried, N.T.11
Johnsen, S.A.12
Gius, D.13
Yu, D.S.14
-
107
-
-
84896690461
-
SIRT2 regulates tumour hypoxia response by promoting HIF-1alpha hydroxylation
-
Seo K.S., Park J.H., Heo J.Y., Jing K., Han J., Min K.N., Kim C., Koh G.Y., Lim K., Kang G.Y., Uee Lee J., Yim Y.H., Shong M., Kwak T.H., Kweon G.R. SIRT2 regulates tumour hypoxia response by promoting HIF-1alpha hydroxylation. Oncogene 2015, 34:1354-1362.
-
(2015)
Oncogene
, vol.34
, pp. 1354-1362
-
-
Seo, K.S.1
Park, J.H.2
Heo, J.Y.3
Jing, K.4
Han, J.5
Min, K.N.6
Kim, C.7
Koh, G.Y.8
Lim, K.9
Kang, G.Y.10
Uee Lee, J.11
Yim, Y.H.12
Shong, M.13
Kwak, T.H.14
Kweon, G.R.15
-
108
-
-
84903317314
-
Regulation of G6PD acetylation by SIRT2 and KAT9 modulates NADPH homeostasis and cell survival during oxidative stress
-
Wang Y.P., Zhou L.S., Zhao Y.Z., Wang S.W., Chen L.L., Liu L.X., Ling Z.Q., Hu F.J., Sun Y.P., Zhang J.Y., Yang C., Yang Y., Xiong Y., Guan K.L., Ye D. Regulation of G6PD acetylation by SIRT2 and KAT9 modulates NADPH homeostasis and cell survival during oxidative stress. EMBO J. 2014, 33:1304-1320.
-
(2014)
EMBO J.
, vol.33
, pp. 1304-1320
-
-
Wang, Y.P.1
Zhou, L.S.2
Zhao, Y.Z.3
Wang, S.W.4
Chen, L.L.5
Liu, L.X.6
Ling, Z.Q.7
Hu, F.J.8
Sun, Y.P.9
Zhang, J.Y.10
Yang, C.11
Yang, Y.12
Xiong, Y.13
Guan, K.L.14
Ye, D.15
-
109
-
-
84904052542
-
Oxidative stress activates SIRT2 to deacetylate and stimulate phosphoglycerate mutase
-
Xu Y., Li F., Lv L., Li T., Zhou X., Deng C.X., Guan K.L., Lei Q.Y., Xiong Y. Oxidative stress activates SIRT2 to deacetylate and stimulate phosphoglycerate mutase. Cancer Res. 2014, 74:3630-3642.
-
(2014)
Cancer Res.
, vol.74
, pp. 3630-3642
-
-
Xu, Y.1
Li, F.2
Lv, L.3
Li, T.4
Zhou, X.5
Deng, C.X.6
Guan, K.L.7
Lei, Q.Y.8
Xiong, Y.9
-
110
-
-
84915745083
-
NOTCH-induced aldehyde dehydrogenase 1A1 deacetylation promotes breast cancer stem cells
-
Zhao D., Mo Y., Li M.T., Zou S.W., Cheng Z.L., Sun Y.P., Xiong Y., Guan K.L., Lei Q.Y. NOTCH-induced aldehyde dehydrogenase 1A1 deacetylation promotes breast cancer stem cells. J. Clin. Invest. 2014, 124:5453-5465.
-
(2014)
J. Clin. Invest.
, vol.124
, pp. 5453-5465
-
-
Zhao, D.1
Mo, Y.2
Li, M.T.3
Zou, S.W.4
Cheng, Z.L.5
Sun, Y.P.6
Xiong, Y.7
Guan, K.L.8
Lei, Q.Y.9
-
111
-
-
84922804565
-
Acetylation of TUG protein promotes the accumulation of GLUT4 glucose transporters in an insulin-responsive intracellular compartment
-
Belman J.P., Bian R.R., Habtemichael E.N., Li D.T., Jurczak M.J., Alcazar-Roman A., McNally L.J., Shulman G.I., Bogan J.S. Acetylation of TUG protein promotes the accumulation of GLUT4 glucose transporters in an insulin-responsive intracellular compartment. J. Biol. Chem. 2015, 290:4447-4463.
-
(2015)
J. Biol. Chem.
, vol.290
, pp. 4447-4463
-
-
Belman, J.P.1
Bian, R.R.2
Habtemichael, E.N.3
Li, D.T.4
Jurczak, M.J.5
Alcazar-Roman, A.6
McNally, L.J.7
Shulman, G.I.8
Bogan, J.S.9
-
112
-
-
84903744004
-
SIRT2 induces the checkpoint kinase BubR1 to increase lifespan
-
North B.J., Rosenberg M.A., Jeganathan K.B., Hafner A.V., Michan S., Dai J., Baker D.J., Cen Y., Wu L.E., Sauve A.A., van Deursen J.M., Rosenzweig A., Sinclair D.A. SIRT2 induces the checkpoint kinase BubR1 to increase lifespan. EMBO J. 2014, 33:1438-1453.
-
(2014)
EMBO J.
, vol.33
, pp. 1438-1453
-
-
North, B.J.1
Rosenberg, M.A.2
Jeganathan, K.B.3
Hafner, A.V.4
Michan, S.5
Dai, J.6
Baker, D.J.7
Cen, Y.8
Wu, L.E.9
Sauve, A.A.10
van Deursen, J.M.11
Rosenzweig, A.12
Sinclair, D.A.13
-
113
-
-
84884163378
-
An acetylome peptide microarray reveals specificities and deacetylation substrates for all human sirtuin isoforms
-
Rauh D., Fischer F., Gertz M., Lakshminarasimhan M., Bergbrede T., Aladini F., Kambach C., Becker C.F., Zerweck J., Schutkowski M., Steegborn C. An acetylome peptide microarray reveals specificities and deacetylation substrates for all human sirtuin isoforms. Nat. Commun. 2013, 4:2327.
-
(2013)
Nat. Commun.
, vol.4
, pp. 2327
-
-
Rauh, D.1
Fischer, F.2
Gertz, M.3
Lakshminarasimhan, M.4
Bergbrede, T.5
Aladini, F.6
Kambach, C.7
Becker, C.F.8
Zerweck, J.9
Schutkowski, M.10
Steegborn, C.11
-
114
-
-
78649509214
-
SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production
-
Shimazu T., Hirschey M.D., Hua L., Dittenhafer-Reed K.E., Schwer B., Lombard D.B., Li Y., Bunkenborg J., Alt F.W., Denu J.M., Jacobson M.P., Verdin E. SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production. Cell Metab. 2010, 12:654-661.
-
(2010)
Cell Metab.
, vol.12
, pp. 654-661
-
-
Shimazu, T.1
Hirschey, M.D.2
Hua, L.3
Dittenhafer-Reed, K.E.4
Schwer, B.5
Lombard, D.B.6
Li, Y.7
Bunkenborg, J.8
Alt, F.W.9
Denu, J.M.10
Jacobson, M.P.11
Verdin, E.12
-
115
-
-
84888329025
-
Sirtuin 3 (SIRT3) protein regulates long-chain acyl-CoA dehydrogenase by deacetylating conserved lysines near the active site
-
Bharathi S.S., Zhang Y., Mohsen A.W., Uppala R., Balasubramani M., Schreiber E., Uechi G., Beck M.E., Rardin M.J., Vockley J., Verdin E., Gibson B.W., Hirschey M.D., Goetzman E.S. Sirtuin 3 (SIRT3) protein regulates long-chain acyl-CoA dehydrogenase by deacetylating conserved lysines near the active site. J. Biol. Chem. 2013, 288:33837-33847.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 33837-33847
-
-
Bharathi, S.S.1
Zhang, Y.2
Mohsen, A.W.3
Uppala, R.4
Balasubramani, M.5
Schreiber, E.6
Uechi, G.7
Beck, M.E.8
Rardin, M.J.9
Vockley, J.10
Verdin, E.11
Gibson, B.W.12
Hirschey, M.D.13
Goetzman, E.S.14
-
116
-
-
80051716282
-
Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity
-
Finley L.W., Haas W., Desquiret-Dumas V., Wallace D.C., Procaccio V., Gygi S.P., Haigis M.C. Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity. PLoS One 2011, 6.
-
(2011)
PLoS One
, vol.6
-
-
Finley, L.W.1
Haas, W.2
Desquiret-Dumas, V.3
Wallace, D.C.4
Procaccio, V.5
Gygi, S.P.6
Haigis, M.C.7
-
117
-
-
53549105529
-
SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70
-
Sundaresan N.R., Samant S.A., Pillai V.B., Rajamohan S.B., Gupta M.P. SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70. Mol. Cell. Biol. 2008, 28:6384-6401.
-
(2008)
Mol. Cell. Biol.
, vol.28
, pp. 6384-6401
-
-
Sundaresan, N.R.1
Samant, S.A.2
Pillai, V.B.3
Rajamohan, S.B.4
Gupta, M.P.5
-
118
-
-
78649521247
-
Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation
-
Qiu X., Brown K., Hirschey M.D., Verdin E., Chen D. Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab. 2010, 12:662-667.
-
(2010)
Cell Metab.
, vol.12
, pp. 662-667
-
-
Qiu, X.1
Brown, K.2
Hirschey, M.D.3
Verdin, E.4
Chen, D.5
-
119
-
-
84859951790
-
SIRT3 protein deacetylates isocitrate dehydrogenase 2 (IDH2) and regulates mitochondrial redox status
-
Yu W., Dittenhafer-Reed K.E., Denu J.M. SIRT3 protein deacetylates isocitrate dehydrogenase 2 (IDH2) and regulates mitochondrial redox status. J. Biol. Chem. 2012, 287:14078-14086.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 14078-14086
-
-
Yu, W.1
Dittenhafer-Reed, K.E.2
Denu, J.M.3
-
120
-
-
50149103440
-
Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5
-
Schlicker C., Gertz M., Papatheodorou P., Kachholz B., Becker C.F., Steegborn C. Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. J. Mol. Biol. 2008, 382:790-801.
-
(2008)
J. Mol. Biol.
, vol.382
, pp. 790-801
-
-
Schlicker, C.1
Gertz, M.2
Papatheodorou, P.3
Kachholz, B.4
Becker, C.F.5
Steegborn, C.6
-
121
-
-
77449120223
-
Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway
-
Pillai V.B., Sundaresan N.R., Kim G., Gupta M., Rajamohan S.B., Pillai J.B., Samant S., Ravindra P.V., Isbatan A., Gupta M.P. Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway. J. Biol. Chem. 2010, 285:3133-3144.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 3133-3144
-
-
Pillai, V.B.1
Sundaresan, N.R.2
Kim, G.3
Gupta, M.4
Rajamohan, S.B.5
Pillai, J.B.6
Samant, S.7
Ravindra, P.V.8
Isbatan, A.9
Gupta, M.P.10
-
122
-
-
77951235122
-
NAD+-dependent deacetylase SIRT3 regulates mitochondrial protein synthesis by deacetylation of the ribosomal protein MRPL10
-
Yang Y., Cimen H., Han M.J., Shi T., Deng J.H., Koc H., Palacios O.M., Montier L., Bai Y., Tong Q., Koc E.C. NAD+-dependent deacetylase SIRT3 regulates mitochondrial protein synthesis by deacetylation of the ribosomal protein MRPL10. J. Biol. Chem. 2010, 285:7417-7429.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 7417-7429
-
-
Yang, Y.1
Cimen, H.2
Han, M.J.3
Shi, T.4
Deng, J.H.5
Koc, H.6
Palacios, O.M.7
Montier, L.8
Bai, Y.9
Tong, Q.10
Koc, E.C.11
-
123
-
-
84902670910
-
SIRT3 deacetylates ATP synthase F1 complex proteins in response to nutrient- and exercise-induced stress
-
Vassilopoulos A., Pennington J.D., Andresson T., Rees D.M., Bosley A.D., Fearnley I.M., Ham A., Flynn C.R., Hill S., Rose K.L., Kim H.S., Deng C.X., Walker J.E., Gius D. SIRT3 deacetylates ATP synthase F1 complex proteins in response to nutrient- and exercise-induced stress. Antioxid. Redox Signal. 2014, 21:551-564.
-
(2014)
Antioxid. Redox Signal.
, vol.21
, pp. 551-564
-
-
Vassilopoulos, A.1
Pennington, J.D.2
Andresson, T.3
Rees, D.M.4
Bosley, A.D.5
Fearnley, I.M.6
Ham, A.7
Flynn, C.R.8
Hill, S.9
Rose, K.L.10
Kim, H.S.11
Deng, C.X.12
Walker, J.E.13
Gius, D.14
-
124
-
-
77951176793
-
Sirtuin-3 deacetylation of cyclophilin D induces dissociation of hexokinase II from the mitochondria
-
Shulga N., Wilson-Smith R., Pastorino J.G. Sirtuin-3 deacetylation of cyclophilin D induces dissociation of hexokinase II from the mitochondria. J. Cell Sci. 2010, 123:894-902.
-
(2010)
J. Cell Sci.
, vol.123
, pp. 894-902
-
-
Shulga, N.1
Wilson-Smith, R.2
Pastorino, J.G.3
-
125
-
-
78651468707
-
Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction
-
Hallows W.C., Yu W., Smith B.C., Devries M.K., Ellinger J.J., Someya S., Shortreed M.R., Prolla T., Markley J.L., Smith L.M., Zhao S., Guan K.L., Denu J.M. Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction. Mol. Cell 2011, 41:139-149.
-
(2011)
Mol. Cell
, vol.41
, pp. 139-149
-
-
Hallows, W.C.1
Yu, W.2
Smith, B.C.3
Devries, M.K.4
Ellinger, J.J.5
Someya, S.6
Shortreed, M.R.7
Prolla, T.8
Markley, J.L.9
Smith, L.M.10
Zhao, S.11
Guan, K.L.12
Denu, J.M.13
-
126
-
-
84855757015
-
Acetylation-dependent regulation of mitochondrial ALDH2 activation by SIRT3 mediates acute ethanol-induced eNOS activation
-
Xue L., Xu F., Meng L., Wei S., Wang J., Hao P., Bian Y., Zhang Y., Chen Y. Acetylation-dependent regulation of mitochondrial ALDH2 activation by SIRT3 mediates acute ethanol-induced eNOS activation. FEBS Lett. 2012, 586:137-142.
-
(2012)
FEBS Lett.
, vol.586
, pp. 137-142
-
-
Xue, L.1
Xu, F.2
Meng, L.3
Wei, S.4
Wang, J.5
Hao, P.6
Bian, Y.7
Zhang, Y.8
Chen, Y.9
-
127
-
-
84872812301
-
Identification of acetylation-dependent regulatory mechanisms that govern the oncogenic functions of Skp2
-
Wang Z., Inuzuka H., Zhong J., Liu P., Sarkar F.H., Sun Y., Wei W. Identification of acetylation-dependent regulatory mechanisms that govern the oncogenic functions of Skp2. Oncotarget 2012, 3:1294-1300.
-
(2012)
Oncotarget
, vol.3
, pp. 1294-1300
-
-
Wang, Z.1
Inuzuka, H.2
Zhong, J.3
Liu, P.4
Sarkar, F.H.5
Sun, Y.6
Wei, W.7
-
128
-
-
84879059766
-
SIRT3 deacetylates FOXO3 to protect mitochondria against oxidative damage
-
Tseng A.H., Shieh S.S., Wang D.L. SIRT3 deacetylates FOXO3 to protect mitochondria against oxidative damage. Free Radic. Biol. Med. 2013, 63:222-234.
-
(2013)
Free Radic. Biol. Med.
, vol.63
, pp. 222-234
-
-
Tseng, A.H.1
Shieh, S.S.2
Wang, D.L.3
-
129
-
-
84891506172
-
Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation
-
Jing E., O'Neill B.T., Rardin M.J., Kleinridders A., Ilkeyeva O.R., Ussar S., Bain J.R., Lee K.Y., Verdin E.M., Newgard C.B., Gibson B.W., Kahn C.R. Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation. Diabetes 2013, 62:3404-3417.
-
(2013)
Diabetes
, vol.62
, pp. 3404-3417
-
-
Jing, E.1
O'Neill, B.T.2
Rardin, M.J.3
Kleinridders, A.4
Ilkeyeva, O.R.5
Ussar, S.6
Bain, J.R.7
Lee, K.Y.8
Verdin, E.M.9
Newgard, C.B.10
Gibson, B.W.11
Kahn, C.R.12
-
130
-
-
84881076472
-
Interaction of Sirt3 with OGG1 contributes to repair of mitochondrial DNA and protects from apoptotic cell death under oxidative stress
-
Cheng Y., Ren X., Gowda A.S., Shan Y., Zhang L., Yuan Y.S., Patel R., Wu H., Huber-Keener K., Yang J.W., Liu D., Spratt T.E., Yang J.M. Interaction of Sirt3 with OGG1 contributes to repair of mitochondrial DNA and protects from apoptotic cell death under oxidative stress. Cell Death Dis. 2013, 4.
-
(2013)
Cell Death Dis.
, vol.4
-
-
Cheng, Y.1
Ren, X.2
Gowda, A.S.3
Shan, Y.4
Zhang, L.5
Yuan, Y.S.6
Patel, R.7
Wu, H.8
Huber-Keener, K.9
Yang, J.W.10
Liu, D.11
Spratt, T.E.12
Yang, J.M.13
-
131
-
-
84893819991
-
SIRT3 deacetylates and activates OPA1 to regulate mitochondrial dynamics during stress
-
Samant S.A., Zhang H.J., Hong Z., Pillai V.B., Sundaresan N.R., Wolfgeher D., Archer S.L., Chan D.C., Gupta M.P. SIRT3 deacetylates and activates OPA1 to regulate mitochondrial dynamics during stress. Mol. Cell. Biol. 2014, 34:807-819.
-
(2014)
Mol. Cell. Biol.
, vol.34
, pp. 807-819
-
-
Samant, S.A.1
Zhang, H.J.2
Hong, Z.3
Pillai, V.B.4
Sundaresan, N.R.5
Wolfgeher, D.6
Archer, S.L.7
Chan, D.C.8
Gupta, M.P.9
-
132
-
-
84922031813
-
Prolonged fasting identifies heat shock protein 10 as a Sirtuin 3 substrate: elucidating a new mechanism linking mitochondrial protein acetylation to fatty acid oxidation enzyme folding and function
-
Lu Z., Chen Y., Aponte A.M., Battaglia V., Gucek M., Sack M.N. Prolonged fasting identifies heat shock protein 10 as a Sirtuin 3 substrate: elucidating a new mechanism linking mitochondrial protein acetylation to fatty acid oxidation enzyme folding and function. J. Biol. Chem. 2015, 290:2466-2476.
-
(2015)
J. Biol. Chem.
, vol.290
, pp. 2466-2476
-
-
Lu, Z.1
Chen, Y.2
Aponte, A.M.3
Battaglia, V.4
Gucek, M.5
Sack, M.N.6
-
133
-
-
84927698067
-
SIRT3-dependent GOT2 acetylation status affects the malate-aspartate NADH shuttle activity and pancreatic tumor growth
-
Yang H., Zhou L., Shi Q., Zhao Y., Lin H., Zhang M., Zhao S., Yang Y., Ling Z.Q., Guan K.L., Xiong Y., Ye D. SIRT3-dependent GOT2 acetylation status affects the malate-aspartate NADH shuttle activity and pancreatic tumor growth. EMBO J. 2015, 34:1110-1125.
-
(2015)
EMBO J.
, vol.34
, pp. 1110-1125
-
-
Yang, H.1
Zhou, L.2
Shi, Q.3
Zhao, Y.4
Lin, H.5
Zhang, M.6
Zhao, S.7
Yang, Y.8
Ling, Z.Q.9
Guan, K.L.10
Xiong, Y.11
Ye, D.12
-
134
-
-
84886993387
-
SIRT4 represses peroxisome proliferator-activated receptor alpha activity to suppress hepatic fat oxidation
-
Laurent G., de Boer V.C., Finley L.W., Sweeney M., Lu H., Schug T.T., Cen Y., Jeong S.M., Li X., Sauve A.A., Haigis M.C. SIRT4 represses peroxisome proliferator-activated receptor alpha activity to suppress hepatic fat oxidation. Mol. Cell. Biol. 2013, 33:4552-4561.
-
(2013)
Mol. Cell. Biol.
, vol.33
, pp. 4552-4561
-
-
Laurent, G.1
de Boer, V.C.2
Finley, L.W.3
Sweeney, M.4
Lu, H.5
Schug, T.T.6
Cen, Y.7
Jeong, S.M.8
Li, X.9
Sauve, A.A.10
Haigis, M.C.11
-
135
-
-
84919933749
-
Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity
-
Mathias R.A., Greco T.M., Oberstein A., Budayeva H.G., Chakrabarti R., Rowland E.A., Kang Y., Shenk T., Cristea I.M. Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity. Cell 2014, 159:1615-1625.
-
(2014)
Cell
, vol.159
, pp. 1615-1625
-
-
Mathias, R.A.1
Greco, T.M.2
Oberstein, A.3
Budayeva, H.G.4
Chakrabarti, R.5
Rowland, E.A.6
Kang, Y.7
Shenk, T.8
Cristea, I.M.9
-
136
-
-
65249087389
-
SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle
-
Nakagawa T., Lomb D.J., Haigis M.C., Guarente L. SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell 2009, 137:560-570.
-
(2009)
Cell
, vol.137
, pp. 560-570
-
-
Nakagawa, T.1
Lomb, D.J.2
Haigis, M.C.3
Guarente, L.4
-
137
-
-
84887412525
-
SIRT5 desuccinylates and activates SOD1 to eliminate ROS
-
Lin Z.F., Xu H.B., Wang J.Y., Lin Q., Ruan Z., Liu F.B., Jin W., Huang H.H., Chen X. SIRT5 desuccinylates and activates SOD1 to eliminate ROS. Biochem. Biophys. Res. Commun. 2013, 441:191-195.
-
(2013)
Biochem. Biophys. Res. Commun.
, vol.441
, pp. 191-195
-
-
Lin, Z.F.1
Xu, H.B.2
Wang, J.Y.3
Lin, Q.4
Ruan, Z.5
Liu, F.B.6
Jin, W.7
Huang, H.H.8
Chen, X.9
-
138
-
-
84869498851
-
SIRT5 deacetylates and activates urate oxidase in liver mitochondria of mice
-
Nakamura Y., Ogura M., Ogura K., Tanaka D., Inagaki N. SIRT5 deacetylates and activates urate oxidase in liver mitochondria of mice. FEBS Lett. 2012, 586:4076-4081.
-
(2012)
FEBS Lett.
, vol.586
, pp. 4076-4081
-
-
Nakamura, Y.1
Ogura, M.2
Ogura, K.3
Tanaka, D.4
Inagaki, N.5
-
139
-
-
84926182957
-
SIRT3 and SIRT5 regulate the enzyme activity and cardiolipin binding of very long-chain Acyl-CoA dehydrogenase
-
Zhang Y., Bharathi S.S., Rardin M.J., Uppala R., Verdin E., Gibson B.W., Goetzman E.S. SIRT3 and SIRT5 regulate the enzyme activity and cardiolipin binding of very long-chain Acyl-CoA dehydrogenase. PLoS One 2015, 10.
-
(2015)
PLoS One
, vol.10
-
-
Zhang, Y.1
Bharathi, S.S.2
Rardin, M.J.3
Uppala, R.4
Verdin, E.5
Gibson, B.W.6
Goetzman, E.S.7
-
140
-
-
84875881601
-
SIRT6 regulates TNF-alpha secretion through hydrolysis of long-chain fatty acyl lysine
-
Jiang H., Khan S., Wang Y., Charron G., He B., Sebastian C., Du J., Kim R., Ge E., Mostoslavsky R., Hang H.C., Hao Q., Lin H. SIRT6 regulates TNF-alpha secretion through hydrolysis of long-chain fatty acyl lysine. Nature 2013, 496:110-113.
-
(2013)
Nature
, vol.496
, pp. 110-113
-
-
Jiang, H.1
Khan, S.2
Wang, Y.3
Charron, G.4
He, B.5
Sebastian, C.6
Du, J.7
Kim, R.8
Ge, E.9
Mostoslavsky, R.10
Hang, H.C.11
Hao, Q.12
Lin, H.13
-
141
-
-
77956550868
-
Human SIRT6 promotes DNA end resection through CtIP deacetylation
-
Kaidi A., Weinert B.T., Choudhary C., Jackson S.P. Human SIRT6 promotes DNA end resection through CtIP deacetylation. Science 2010, 329:1348-1353.
-
(2010)
Science
, vol.329
, pp. 1348-1353
-
-
Kaidi, A.1
Weinert, B.T.2
Choudhary, C.3
Jackson, S.P.4
-
142
-
-
79959363092
-
SIRT6 promotes DNA repair under stress by activating PARP1
-
Mao Z., Hine C., Tian X., Van Meter M., Au M., Vaidya A., Seluanov A., Gorbunova V. SIRT6 promotes DNA repair under stress by activating PARP1. Science 2011, 332:1443-1446.
-
(2011)
Science
, vol.332
, pp. 1443-1446
-
-
Mao, Z.1
Hine, C.2
Tian, X.3
Van Meter, M.4
Au, M.5
Vaidya, A.6
Seluanov, A.7
Gorbunova, V.8
-
143
-
-
84871676013
-
The deacetylase Sirt6 activates the acetyltransferase GCN5 and suppresses hepatic gluconeogenesis
-
Dominy J.E., Lee Y., Jedrychowski M.P., Chim H., Jurczak M.J., Camporez J.P., Ruan H.B., Feldman J., Pierce K., Mostoslavsky R., Denu J.M., Clish C.B., Yang X., Shulman G.I., Gygi S.P., Puigserver P. The deacetylase Sirt6 activates the acetyltransferase GCN5 and suppresses hepatic gluconeogenesis. Mol. Cell 2012, 48:900-913.
-
(2012)
Mol. Cell
, vol.48
, pp. 900-913
-
-
Dominy, J.E.1
Lee, Y.2
Jedrychowski, M.P.3
Chim, H.4
Jurczak, M.J.5
Camporez, J.P.6
Ruan, H.B.7
Feldman, J.8
Pierce, K.9
Mostoslavsky, R.10
Denu, J.M.11
Clish, C.B.12
Yang, X.13
Shulman, G.I.14
Gygi, S.P.15
Puigserver, P.16
-
144
-
-
84918592495
-
SIRT6 represses LINE1 retrotransposons by ribosylating KAP1 but this repression fails with stress and age
-
Van Meter M., Kashyap M., Rezazadeh S., Geneva A.J., Morello T.D., Seluanov A., Gorbunova V. SIRT6 represses LINE1 retrotransposons by ribosylating KAP1 but this repression fails with stress and age. Nat. Commun. 2014, 5:5011.
-
(2014)
Nat. Commun.
, vol.5
, pp. 5011
-
-
Van Meter, M.1
Kashyap, M.2
Rezazadeh, S.3
Geneva, A.J.4
Morello, T.D.5
Seluanov, A.6
Gorbunova, V.7
-
145
-
-
84863453769
-
SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation
-
Barber M.F., Michishita-Kioi E., Xi Y., Tasselli L., Kioi M., Moqtaderi Z., Tennen R.I., Paredes S., Young N.L., Chen K., Struhl K., Garcia B.A., Gozani O., Li W., Chua K.F. SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature 2012, 487:114-118.
-
(2012)
Nature
, vol.487
, pp. 114-118
-
-
Barber, M.F.1
Michishita-Kioi, E.2
Xi, Y.3
Tasselli, L.4
Kioi, M.5
Moqtaderi, Z.6
Tennen, R.I.7
Paredes, S.8
Young, N.L.9
Chen, K.10
Struhl, K.11
Garcia, B.A.12
Gozani, O.13
Li, W.14
Chua, K.F.15
-
146
-
-
84887172167
-
Repression of RNA polymerase I upon stress is caused by inhibition of RNA-dependent deacetylation of PAF53 by SIRT7
-
Chen S., Seiler J., Santiago-Reichelt M., Felbel K., Grummt I., Voit R. Repression of RNA polymerase I upon stress is caused by inhibition of RNA-dependent deacetylation of PAF53 by SIRT7. Mol. Cell 2013, 52:303-313.
-
(2013)
Mol. Cell
, vol.52
, pp. 303-313
-
-
Chen, S.1
Seiler, J.2
Santiago-Reichelt, M.3
Felbel, K.4
Grummt, I.5
Voit, R.6
-
147
-
-
84910145057
-
A SIRT7-dependent acetylation switch of GABPbeta1 controls mitochondrial function
-
Ryu D., Jo Y.S., Lo Sasso G., Stein S., Zhang H., Perino A., Lee J.U., Zeviani M., Romand R., Hottiger M.O., Schoonjans K., Auwerx J. A SIRT7-dependent acetylation switch of GABPbeta1 controls mitochondrial function. Cell Metab. 2014, 20:856-869.
-
(2014)
Cell Metab.
, vol.20
, pp. 856-869
-
-
Ryu, D.1
Jo, Y.S.2
Lo Sasso, G.3
Stein, S.4
Zhang, H.5
Perino, A.6
Lee, J.U.7
Zeviani, M.8
Romand, R.9
Hottiger, M.O.10
Schoonjans, K.11
Auwerx, J.12
-
148
-
-
41449083867
-
Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice
-
Vakhrusheva O., Smolka C., Gajawada P., Kostin S., Boettger T., Kubin T., Braun T., Bober E. Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ. Res. 2008, 102:703-710.
-
(2008)
Circ. Res.
, vol.102
, pp. 703-710
-
-
Vakhrusheva, O.1
Smolka, C.2
Gajawada, P.3
Kostin, S.4
Boettger, T.5
Kubin, T.6
Braun, T.7
Bober, E.8
-
149
-
-
0037207475
-
The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis
-
McBurney M.W., Yang X., Jardine K., Hixon M., Boekelheide K., Webb J.R., Lansdorp P.M., Lemieux M. The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis. Mol. Cell. Biol. 2003, 23:38-54.
-
(2003)
Mol. Cell. Biol.
, vol.23
, pp. 38-54
-
-
McBurney, M.W.1
Yang, X.2
Jardine, K.3
Hixon, M.4
Boekelheide, K.5
Webb, J.R.6
Lansdorp, P.M.7
Lemieux, M.8
-
150
-
-
0141814680
-
Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice
-
Cheng H.L., Mostoslavsky R., Saito S., Manis J.P., Gu Y., Patel P., Bronson R., Appella E., Alt F.W., Chua K.F. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc. Natl. Acad. Sci. U. S. A. 2003, 100:10794-10799.
-
(2003)
Proc. Natl. Acad. Sci. U. S. A.
, vol.100
, pp. 10794-10799
-
-
Cheng, H.L.1
Mostoslavsky, R.2
Saito, S.3
Manis, J.P.4
Gu, Y.5
Patel, P.6
Bronson, R.7
Appella, E.8
Alt, F.W.9
Chua, K.F.10
-
151
-
-
0043244921
-
Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state
-
Fulco M., Schiltz R.L., Iezzi S., King M.T., Zhao P., Kashiwaya Y., Hoffman E., Veech R.L., Sartorelli V. Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. Mol. Cell 2003, 12:51-62.
-
(2003)
Mol. Cell
, vol.12
, pp. 51-62
-
-
Fulco, M.1
Schiltz, R.L.2
Iezzi, S.3
King, M.T.4
Zhao, P.5
Kashiwaya, Y.6
Hoffman, E.7
Veech, R.L.8
Sartorelli, V.9
-
153
-
-
65549113750
-
CBP/p300-mediated acetylation of histone H3 on lysine 56
-
Das C., Lucia M.S., Hansen K.C., Tyler J.K. CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature 2009, 459:113-117.
-
(2009)
Nature
, vol.459
, pp. 113-117
-
-
Das, C.1
Lucia, M.S.2
Hansen, K.C.3
Tyler, J.K.4
-
154
-
-
3943054839
-
The Sir2 family of protein deacetylases
-
Blander G., Guarente L. The Sir2 family of protein deacetylases. Annu. Rev. Biochem. 2004, 73:417-435.
-
(2004)
Annu. Rev. Biochem.
, vol.73
, pp. 417-435
-
-
Blander, G.1
Guarente, L.2
-
155
-
-
3242878706
-
NBS1 and its functional role in the DNA damage response
-
Kobayashi J., Antoccia A., Tauchi H., Matsuura S., Komatsu K. NBS1 and its functional role in the DNA damage response. DNA Repair 2004, 3:855-861.
-
(2004)
DNA Repair
, vol.3
, pp. 855-861
-
-
Kobayashi, J.1
Antoccia, A.2
Tauchi, H.3
Matsuura, S.4
Komatsu, K.5
-
156
-
-
0035913911
-
Negative control of p53 by Sir2alpha promotes cell survival under stress
-
Luo J., Nikolaev A.Y., Imai S., Chen D., Su F., Shiloh A., Guarente L., Gu W. Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 2001, 107:137-148.
-
(2001)
Cell
, vol.107
, pp. 137-148
-
-
Luo, J.1
Nikolaev, A.Y.2
Imai, S.3
Chen, D.4
Su, F.5
Shiloh, A.6
Guarente, L.7
Gu, W.8
-
158
-
-
34547458550
-
P53-mediated activation of miRNA34 candidate tumor-suppressor genes
-
Bommer G.T., Gerin I., Feng Y., Kaczorowski A.J., Kuick R., Love R.E., Zhai Y., Giordano T.J., Qin Z.S., Moore B.B., MacDougald O.A., Cho K.R., Fearon E.R. p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr. Biol. 2007, 17:1298-1307.
-
(2007)
Curr. Biol.
, vol.17
, pp. 1298-1307
-
-
Bommer, G.T.1
Gerin, I.2
Feng, Y.3
Kaczorowski, A.J.4
Kuick, R.5
Love, R.E.6
Zhai, Y.7
Giordano, T.J.8
Qin, Z.S.9
Moore, B.B.10
MacDougald, O.A.11
Cho, K.R.12
Fearon, E.R.13
-
159
-
-
84903793099
-
Augmentation of NAD(+) by NQO1 attenuates cisplatin-mediated hearing impairment
-
Kim H.J., Oh G.S., Shen A., Lee S.B., Choe S.K., Kwon K.B., Lee S., Seo K.S., Kwak T.H., Park R., So H.S. Augmentation of NAD(+) by NQO1 attenuates cisplatin-mediated hearing impairment. Cell Death Dis. 2014, 5.
-
(2014)
Cell Death Dis.
, vol.5
-
-
Kim, H.J.1
Oh, G.S.2
Shen, A.3
Lee, S.B.4
Choe, S.K.5
Kwon, K.B.6
Lee, S.7
Seo, K.S.8
Kwak, T.H.9
Park, R.10
So, H.S.11
-
160
-
-
78650648938
-
Roles of SIRT1 in the acute and restorative phases following induction of inflammation
-
Zhang Z., Lowry S.F., Guarente L., Haimovich B. Roles of SIRT1 in the acute and restorative phases following induction of inflammation. J. Biol. Chem. 2010, 285:41391-41401.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 41391-41401
-
-
Zhang, Z.1
Lowry, S.F.2
Guarente, L.3
Haimovich, B.4
-
161
-
-
53149100858
-
SIRT1 longevity factor suppresses NF-kappaB -driven immune responses: regulation of aging via NF-kappaB acetylation?
-
Salminen A., Kauppinen A., Suuronen T., Kaarniranta K. SIRT1 longevity factor suppresses NF-kappaB -driven immune responses: regulation of aging via NF-kappaB acetylation?. BioEssays 2008, 30:939-942.
-
(2008)
BioEssays
, vol.30
, pp. 939-942
-
-
Salminen, A.1
Kauppinen, A.2
Suuronen, T.3
Kaarniranta, K.4
-
162
-
-
42649146208
-
SIRT1, an antiinflammatory and antiaging protein, is decreased in lungs of patients with chronic obstructive pulmonary disease
-
Rajendrasozhan S., Yang S.R., Kinnula V.L., Rahman I. SIRT1, an antiinflammatory and antiaging protein, is decreased in lungs of patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2008, 177:861-870.
-
(2008)
Am. J. Respir. Crit. Care Med.
, vol.177
, pp. 861-870
-
-
Rajendrasozhan, S.1
Yang, S.R.2
Kinnula, V.L.3
Rahman, I.4
-
163
-
-
77956677458
-
Myeloid deletion of SIRT1 induces inflammatory signaling in response to environmental stress
-
Schug T.T., Xu Q., Gao H., Peres-da-Silva A., Draper D.W., Fessler M.B., Purushotham A., Li X. Myeloid deletion of SIRT1 induces inflammatory signaling in response to environmental stress. Mol. Cell. Biol. 2010, 30:4712-4721.
-
(2010)
Mol. Cell. Biol.
, vol.30
, pp. 4712-4721
-
-
Schug, T.T.1
Xu, Q.2
Gao, H.3
Peres-da-Silva, A.4
Draper, D.W.5
Fessler, M.B.6
Purushotham, A.7
Li, X.8
-
164
-
-
84910624272
-
Inflammatory stimuli induce inhibitory S-nitrosylation of the deacetylase SIRT1 to increase acetylation and activation of p53 and p65
-
Shinozaki S., Chang K., Sakai M., Shimizu N., Yamada M., Tanaka T., Nakazawa H., Ichinose F., Yamada Y., Ishigami A., Ito H., Ouchi Y., Starr M.E., Saito H., Shimokado K., Stamler J.S., Kaneki M. Inflammatory stimuli induce inhibitory S-nitrosylation of the deacetylase SIRT1 to increase acetylation and activation of p53 and p65. Sci. Signal. 2014, 7.
-
(2014)
Sci. Signal.
, vol.7
-
-
Shinozaki, S.1
Chang, K.2
Sakai, M.3
Shimizu, N.4
Yamada, M.5
Tanaka, T.6
Nakazawa, H.7
Ichinose, F.8
Yamada, Y.9
Ishigami, A.10
Ito, H.11
Ouchi, Y.12
Starr, M.E.13
Saito, H.14
Shimokado, K.15
Stamler, J.S.16
Kaneki, M.17
-
165
-
-
67650563916
-
SirT1 is an inhibitor of proliferation and tumor formation in colon cancer
-
Kabra N., Li Z., Chen L., Li B., Zhang X., Wang C., Yeatman T., Coppola D., Chen J. SirT1 is an inhibitor of proliferation and tumor formation in colon cancer. J. Biol. Chem. 2009, 284:18210-18217.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 18210-18217
-
-
Kabra, N.1
Li, Z.2
Chen, L.3
Li, B.4
Zhang, X.5
Wang, C.6
Yeatman, T.7
Coppola, D.8
Chen, J.9
-
166
-
-
44849096876
-
The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth
-
Firestein R., Blander G., Michan S., Oberdoerffer P., Ogino S., Campbell J., Bhimavarapu A., Luikenhuis S., de Cabo R., Fuchs C., Hahn W.C., Guarente L.P., Sinclair D.A. The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth. PLoS One 2008, 3.
-
(2008)
PLoS One
, vol.3
-
-
Firestein, R.1
Blander, G.2
Michan, S.3
Oberdoerffer, P.4
Ogino, S.5
Campbell, J.6
Bhimavarapu, A.7
Luikenhuis, S.8
de Cabo, R.9
Fuchs, C.10
Hahn, W.C.11
Guarente, L.P.12
Sinclair, D.A.13
-
167
-
-
34547906123
-
Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1
-
Rodgers J.T., Puigserver P. Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1. Proc. Natl. Acad. Sci. U. S. A. 2007, 104:12861-12866.
-
(2007)
Proc. Natl. Acad. Sci. U. S. A.
, vol.104
, pp. 12861-12866
-
-
Rodgers, J.T.1
Puigserver, P.2
-
168
-
-
3042681042
-
Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma
-
Picard F., Kurtev M., Chung N., Topark-Ngarm A., Senawong T., Machado De Oliveira R., Leid M., McBurney M.W., Guarente L. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 2004, 429:771-776.
-
(2004)
Nature
, vol.429
, pp. 771-776
-
-
Picard, F.1
Kurtev, M.2
Chung, N.3
Topark-Ngarm, A.4
Senawong, T.5
Machado De Oliveira, R.6
Leid, M.7
McBurney, M.W.8
Guarente, L.9
-
169
-
-
79957582559
-
Negative regulation of STAT3 protein-mediated cellular respiration by SIRT1 protein
-
Bernier M., Paul R.K., Martin-Montalvo A., Scheibye-Knudsen M., Song S., He H.J., Armour S.M., Hubbard B.P., Bohr V.A., Wang L., Zong Y., Sinclair D.A., de Cabo R. Negative regulation of STAT3 protein-mediated cellular respiration by SIRT1 protein. J. Biol. Chem. 2011, 286:19270-19279.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 19270-19279
-
-
Bernier, M.1
Paul, R.K.2
Martin-Montalvo, A.3
Scheibye-Knudsen, M.4
Song, S.5
He, H.J.6
Armour, S.M.7
Hubbard, B.P.8
Bohr, V.A.9
Wang, L.10
Zong, Y.11
Sinclair, D.A.12
de Cabo, R.13
-
170
-
-
67349276169
-
AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity
-
Canto C., Gerhart-Hines Z., Feige J.N., Lagouge M., Noriega L., Milne J.C., Elliott P.J., Puigserver P., Auwerx J. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 2009, 458:1056-1060.
-
(2009)
Nature
, vol.458
, pp. 1056-1060
-
-
Canto, C.1
Gerhart-Hines, Z.2
Feige, J.N.3
Lagouge, M.4
Noriega, L.5
Milne, J.C.6
Elliott, P.J.7
Puigserver, P.8
Auwerx, J.9
-
171
-
-
33244486764
-
Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells
-
Bordone L., Motta M.C., Picard F., Robinson A., Jhala U.S., Apfeld J., McDonagh T., Lemieux M., McBurney M., Szilvasi A., Easlon E.J., Lin S.J., Guarente L. Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol. 2006, 4.
-
(2006)
PLoS Biol.
, vol.4
-
-
Bordone, L.1
Motta, M.C.2
Picard, F.3
Robinson, A.4
Jhala, U.S.5
Apfeld, J.6
McDonagh, T.7
Lemieux, M.8
McBurney, M.9
Szilvasi, A.10
Easlon, E.J.11
Lin, S.J.12
Guarente, L.13
-
172
-
-
77949539030
-
JNK1 phosphorylates SIRT1 and promotes its enzymatic activity
-
Nasrin N., Kaushik V.K., Fortier E., Wall D., Pearson K.J., de Cabo R., Bordone L. JNK1 phosphorylates SIRT1 and promotes its enzymatic activity. PLoS One 2009, 4.
-
(2009)
PLoS One
, vol.4
-
-
Nasrin, N.1
Kaushik, V.K.2
Fortier, E.3
Wall, D.4
Pearson, K.J.5
de Cabo, R.6
Bordone, L.7
-
173
-
-
84885615564
-
Impaired SIRT1 nucleocytoplasmic shuttling in the senescent heart during ischemic stress
-
Tong C., Morrison A., Mattison S., Qian S., Bryniarski M., Rankin B., Wang J., Thomas D.P., Li J. Impaired SIRT1 nucleocytoplasmic shuttling in the senescent heart during ischemic stress. FASEB J. 2013, 27:4332-4342.
-
(2013)
FASEB J.
, vol.27
, pp. 4332-4342
-
-
Tong, C.1
Morrison, A.2
Mattison, S.3
Qian, S.4
Bryniarski, M.5
Rankin, B.6
Wang, J.7
Thomas, D.P.8
Li, J.9
-
174
-
-
84883779755
-
Impaired cardiac SIRT1 activity by carbonyl stress contributes to aging-related ischemic intolerance
-
Gu C., Xing Y., Jiang L., Chen M., Xu M., Yin Y., Li C., Yang Z., Yu L., Ma H. Impaired cardiac SIRT1 activity by carbonyl stress contributes to aging-related ischemic intolerance. PLoS One 2013, 8.
-
(2013)
PLoS One
, vol.8
-
-
Gu, C.1
Xing, Y.2
Jiang, L.3
Chen, M.4
Xu, M.5
Yin, Y.6
Li, C.7
Yang, Z.8
Yu, L.9
Ma, H.10
-
175
-
-
0037405043
-
Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle
-
Dryden S.C., Nahhas F.A., Nowak J.E., Goustin A.S., Tainsky M.A. Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle. Mol. Cell. Biol. 2003, 23:3173-3185.
-
(2003)
Mol. Cell. Biol.
, vol.23
, pp. 3173-3185
-
-
Dryden, S.C.1
Nahhas, F.A.2
Nowak, J.E.3
Goustin, A.S.4
Tainsky, M.A.5
-
176
-
-
84866013044
-
SIRT2 as a therapeutic target for age-related disorders
-
de Oliveira R.M., Sarkander J., Kazantsev A.G., Outeiro T.F. SIRT2 as a therapeutic target for age-related disorders. Front. Pharmacol. 2012, 3:82.
-
(2012)
Front. Pharmacol.
, vol.3
, pp. 82
-
-
de Oliveira, R.M.1
Sarkander, J.2
Kazantsev, A.G.3
Outeiro, T.F.4
-
177
-
-
0037135972
-
The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase
-
Schwer B., North B.J., Frye R.A., Ott M., Verdin E. The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase. J. Cell Biol. 2002, 158:647-657.
-
(2002)
J. Cell Biol.
, vol.158
, pp. 647-657
-
-
Schwer, B.1
North, B.J.2
Frye, R.A.3
Ott, M.4
Verdin, E.5
-
178
-
-
37549002891
-
Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation
-
Lombard D.B., Alt F.W., Cheng H.L., Bunkenborg J., Streeper R.S., Mostoslavsky R., Kim J., Yancopoulos G., Valenzuela D., Murphy A., Yang Y., Chen Y., Hirschey M.D., Bronson R.T., Haigis M., Guarente L.P., Farese R.V., Weissman S., Verdin E., Schwer B. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol. Cell. Biol. 2007, 27:8807-8814.
-
(2007)
Mol. Cell. Biol.
, vol.27
, pp. 8807-8814
-
-
Lombard, D.B.1
Alt, F.W.2
Cheng, H.L.3
Bunkenborg, J.4
Streeper, R.S.5
Mostoslavsky, R.6
Kim, J.7
Yancopoulos, G.8
Valenzuela, D.9
Murphy, A.10
Yang, Y.11
Chen, Y.12
Hirschey, M.D.13
Bronson, R.T.14
Haigis, M.15
Guarente, L.P.16
Farese, R.V.17
Weissman, S.18
Verdin, E.19
Schwer, B.20
more..
-
179
-
-
17144424946
-
SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes
-
Shi T., Wang F., Stieren E., Tong Q. SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J. Biol. Chem. 2005, 280:13560-13567.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 13560-13567
-
-
Shi, T.1
Wang, F.2
Stieren, E.3
Tong, Q.4
-
180
-
-
34247271282
-
SirT3 is a nuclear NAD+-dependent histone deacetylase that translocates to the mitochondria upon cellular stress
-
Scher M.B., Vaquero A., Reinberg D. SirT3 is a nuclear NAD+-dependent histone deacetylase that translocates to the mitochondria upon cellular stress. Genes Dev. 2007, 21:920-928.
-
(2007)
Genes Dev.
, vol.21
, pp. 920-928
-
-
Scher, M.B.1
Vaquero, A.2
Reinberg, D.3
-
181
-
-
55749084738
-
A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis
-
Ahn B.H., Kim H.S., Song S., Lee I.H., Liu J., Vassilopoulos A., Deng C.X., Finkel T. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc. Natl. Acad. Sci. U. S. A. 2008, 105:14447-14452.
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, pp. 14447-14452
-
-
Ahn, B.H.1
Kim, H.S.2
Song, S.3
Lee, I.H.4
Liu, J.5
Vassilopoulos, A.6
Deng, C.X.7
Finkel, T.8
-
182
-
-
33745889628
-
Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2
-
Schwer B., Bunkenborg J., Verdin R.O., Andersen J.S., Verdin E. Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc. Natl. Acad. Sci. U. S. A. 2006, 103:10224-10229.
-
(2006)
Proc. Natl. Acad. Sci. U. S. A.
, vol.103
, pp. 10224-10229
-
-
Schwer, B.1
Bunkenborg, J.2
Verdin, R.O.3
Andersen, J.S.4
Verdin, E.5
-
183
-
-
79959819034
-
SirT3 suppresses hypoxia inducible factor 1alpha and tumor growth by inhibiting mitochondrial ROS production
-
Bell E.L., Emerling B.M., Ricoult S.J., Guarente L. SirT3 suppresses hypoxia inducible factor 1alpha and tumor growth by inhibiting mitochondrial ROS production. Oncogene 2011, 30:2986-2996.
-
(2011)
Oncogene
, vol.30
, pp. 2986-2996
-
-
Bell, E.L.1
Emerling, B.M.2
Ricoult, S.J.3
Guarente, L.4
-
184
-
-
84928162648
-
Honokiol blocks and reverses cardiac hypertrophy in mice by activating mitochondrial Sirt3
-
Pillai V.B., Samant S., Sundaresan N.R., Raghuraman H., Kim G., Bonner M.Y., Arbiser J.L., Walker D.I., Jones D.P., Gius D., Gupta M.P. Honokiol blocks and reverses cardiac hypertrophy in mice by activating mitochondrial Sirt3. Nat. Commun. 2015, 6:6656.
-
(2015)
Nat. Commun.
, vol.6
, pp. 6656
-
-
Pillai, V.B.1
Samant, S.2
Sundaresan, N.R.3
Raghuraman, H.4
Kim, G.5
Bonner, M.Y.6
Arbiser, J.L.7
Walker, D.I.8
Jones, D.P.9
Gius, D.10
Gupta, M.P.11
-
185
-
-
84876359638
-
SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism
-
Jeong S.M., Xiao C., Finley L.W., Lahusen T., Souza A.L., Pierce K., Li Y.H., Wang X., Laurent G., German N.J., Xu X., Li C., Wang R.H., Lee J., Csibi A., Cerione R., Blenis J., Clish C.B., Kimmelman A., Deng C.X., Haigis M.C. SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism. Cancer Cell 2013, 23:450-463.
-
(2013)
Cancer Cell
, vol.23
, pp. 450-463
-
-
Jeong, S.M.1
Xiao, C.2
Finley, L.W.3
Lahusen, T.4
Souza, A.L.5
Pierce, K.6
Li, Y.H.7
Wang, X.8
Laurent, G.9
German, N.J.10
Xu, X.11
Li, C.12
Wang, R.H.13
Lee, J.14
Csibi, A.15
Cerione, R.16
Blenis, J.17
Clish, C.B.18
Kimmelman, A.19
Deng, C.X.20
Haigis, M.C.21
more..
-
186
-
-
84877720366
-
The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4
-
Csibi A., Fendt S.M., Li C., Poulogiannis G., Choo A.Y., Chapski D.J., Jeong S.M., Dempsey J.M., Parkhitko A., Morrison T., Henske E.P., Haigis M.C., Cantley L.C., Stephanopoulos G., Yu J., Blenis J. The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. Cell 2013, 153:840-854.
-
(2013)
Cell
, vol.153
, pp. 840-854
-
-
Csibi, A.1
Fendt, S.M.2
Li, C.3
Poulogiannis, G.4
Choo, A.Y.5
Chapski, D.J.6
Jeong, S.M.7
Dempsey, J.M.8
Parkhitko, A.9
Morrison, T.10
Henske, E.P.11
Haigis, M.C.12
Cantley, L.C.13
Stephanopoulos, G.14
Yu, J.15
Blenis, J.16
-
187
-
-
84897565291
-
Lysine glutarylation is a protein posttranslational modification regulated by SIRT5
-
Tan M., Peng C., Anderson K.A., Chhoy P., Xie Z., Dai L., Park J., Chen Y., Huang H., Zhang Y., Ro J., Wagner G.R., Green M.F., Madsen A.S., Schmiesing J., Peterson B.S., Xu G., Ilkayeva O.R., Muehlbauer M.J., Braulke T., Muhlhausen C., Backos D.S., Olsen C.A., McGuire P.J., Pletcher S.D., Lombard D.B., Hirschey M.D., Zhao Y. Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell Metab. 2014, 19:605-617.
-
(2014)
Cell Metab.
, vol.19
, pp. 605-617
-
-
Tan, M.1
Peng, C.2
Anderson, K.A.3
Chhoy, P.4
Xie, Z.5
Dai, L.6
Park, J.7
Chen, Y.8
Huang, H.9
Zhang, Y.10
Ro, J.11
Wagner, G.R.12
Green, M.F.13
Madsen, A.S.14
Schmiesing, J.15
Peterson, B.S.16
Xu, G.17
Ilkayeva, O.R.18
Muehlbauer, M.J.19
Braulke, T.20
Muhlhausen, C.21
Backos, D.S.22
Olsen, C.A.23
McGuire, P.J.24
Pletcher, S.D.25
Lombard, D.B.26
Hirschey, M.D.27
Zhao, Y.28
more..
-
188
-
-
84889636259
-
SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks
-
Rardin M.J., He W., Nishida Y., Newman J.C., Carrico C., Danielson S.R., Guo A., Gut P., Sahu A.K., Li B., Uppala R., Fitch M., Riiff T., Zhu L., Zhou J., Mulhern D., Stevens R.D., Ilkayeva O.R., Newgard C.B., Jacobson M.P., Hellerstein M., Goetzman E.S., Gibson B.W., Verdin E. SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks. Cell Metab. 2013, 18:920-933.
-
(2013)
Cell Metab.
, vol.18
, pp. 920-933
-
-
Rardin, M.J.1
He, W.2
Nishida, Y.3
Newman, J.C.4
Carrico, C.5
Danielson, S.R.6
Guo, A.7
Gut, P.8
Sahu, A.K.9
Li, B.10
Uppala, R.11
Fitch, M.12
Riiff, T.13
Zhu, L.14
Zhou, J.15
Mulhern, D.16
Stevens, R.D.17
Ilkayeva, O.R.18
Newgard, C.B.19
Jacobson, M.P.20
Hellerstein, M.21
Goetzman, E.S.22
Gibson, B.W.23
Verdin, E.24
more..
-
189
-
-
84885124677
-
Metabolic characterization of a Sirt5 deficient mouse model
-
Yu J., Sadhukhan S., Noriega L.G., Moullan N., He B., Weiss R.S., Lin H., Schoonjans K., Auwerx J. Metabolic characterization of a Sirt5 deficient mouse model. Sci. Rep. 2013, 3:2806.
-
(2013)
Sci. Rep.
, vol.3
, pp. 2806
-
-
Yu, J.1
Sadhukhan, S.2
Noriega, L.G.3
Moullan, N.4
He, B.5
Weiss, R.S.6
Lin, H.7
Schoonjans, K.8
Auwerx, J.9
-
190
-
-
84892851452
-
Chromatin and beyond: the multitasking roles for SIRT6
-
Kugel S., Mostoslavsky R. Chromatin and beyond: the multitasking roles for SIRT6. Trends Biochem. Sci. 2014, 39:72-81.
-
(2014)
Trends Biochem. Sci.
, vol.39
, pp. 72-81
-
-
Kugel, S.1
Mostoslavsky, R.2
-
191
-
-
74549142287
-
The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha
-
Zhong L., D'Urso A., Toiber D., Sebastian C., Henry R.E., Vadysirisack D.D., Guimaraes A., Marinelli B., Wikstrom J.D., Nir T., Clish C.B., Vaitheesvaran B., Iliopoulos O., Kurland I., Dor Y., Weissleder R., Shirihai O.S., Ellisen L.W., Espinosa J.M., Mostoslavsky R. The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha. Cell 2010, 140:280-293.
-
(2010)
Cell
, vol.140
, pp. 280-293
-
-
Zhong, L.1
D'Urso, A.2
Toiber, D.3
Sebastian, C.4
Henry, R.E.5
Vadysirisack, D.D.6
Guimaraes, A.7
Marinelli, B.8
Wikstrom, J.D.9
Nir, T.10
Clish, C.B.11
Vaitheesvaran, B.12
Iliopoulos, O.13
Kurland, I.14
Dor, Y.15
Weissleder, R.16
Shirihai, O.S.17
Ellisen, L.W.18
Espinosa, J.M.19
Mostoslavsky, R.20
more..
-
192
-
-
77956315551
-
Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis
-
Kim H.S., Xiao C., Wang R.H., Lahusen T., Xu X., Vassilopoulos A., Vazquez-Ortiz G., Jeong W.I., Park O., Ki S.H., Gao B., Deng C.X. Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis. Cell Metab. 2010, 12:224-236.
-
(2010)
Cell Metab.
, vol.12
, pp. 224-236
-
-
Kim, H.S.1
Xiao, C.2
Wang, R.H.3
Lahusen, T.4
Xu, X.5
Vassilopoulos, A.6
Vazquez-Ortiz, G.7
Jeong, W.I.8
Park, O.9
Ki, S.H.10
Gao, B.11
Deng, C.X.12
-
193
-
-
84880068090
-
The role of SIRT6 protein in aging and reprogramming of human induced pluripotent stem cells
-
Sharma A., Diecke S., Zhang W.Y., Lan F., He C., Mordwinkin N.M., Chua K.F., Wu J.C. The role of SIRT6 protein in aging and reprogramming of human induced pluripotent stem cells. J. Biol. Chem. 2013, 288:18439-18447.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 18439-18447
-
-
Sharma, A.1
Diecke, S.2
Zhang, W.Y.3
Lan, F.4
He, C.5
Mordwinkin, N.M.6
Chua, K.F.7
Wu, J.C.8
-
194
-
-
33744466971
-
Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription
-
Ford E., Voit R., Liszt G., Magin C., Grummt I., Guarente L. Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev. 2006, 20:1075-1080.
-
(2006)
Genes Dev.
, vol.20
, pp. 1075-1080
-
-
Ford, E.1
Voit, R.2
Liszt, G.3
Magin, C.4
Grummt, I.5
Guarente, L.6
-
195
-
-
64849107827
-
Involvement of SIRT7 in resumption of rDNA transcription at the exit from mitosis
-
Grob A., Roussel P., Wright J.E., McStay B., Hernandez-Verdun D., Sirri V. Involvement of SIRT7 in resumption of rDNA transcription at the exit from mitosis. J. Cell Sci. 2009, 122:489-498.
-
(2009)
J. Cell Sci.
, vol.122
, pp. 489-498
-
-
Grob, A.1
Roussel, P.2
Wright, J.E.3
McStay, B.4
Hernandez-Verdun, D.5
Sirri, V.6
-
196
-
-
84856755475
-
Functional proteomics establishes the interaction of SIRT7 with chromatin remodeling complexes and expands its role in regulation of RNA polymerase I transcription
-
Tsai Y.C., Greco T.M., Boonmee A., Miteva Y., Cristea I.M. Functional proteomics establishes the interaction of SIRT7 with chromatin remodeling complexes and expands its role in regulation of RNA polymerase I transcription. Mol. Cell. Proteomics 2012, 11.
-
(2012)
Mol. Cell. Proteomics
, vol.11
-
-
Tsai, Y.C.1
Greco, T.M.2
Boonmee, A.3
Miteva, Y.4
Cristea, I.M.5
-
197
-
-
64049090625
-
Sirt7-dependent inhibition of cell growth and proliferation might be instrumental to mediate tissue integrity during aging
-
Vakhrusheva O., Braeuer D., Liu Z., Braun T., Bober E. Sirt7-dependent inhibition of cell growth and proliferation might be instrumental to mediate tissue integrity during aging. J. Physiol. Pharmacol. 2008, 59(Suppl. 9):201-212.
-
(2008)
J. Physiol. Pharmacol.
, vol.59
, pp. 201-212
-
-
Vakhrusheva, O.1
Braeuer, D.2
Liu, Z.3
Braun, T.4
Bober, E.5
-
198
-
-
84874487252
-
Sirtuin7 oncogenic potential in human hepatocellular carcinoma and its regulation by the tumor suppressors MiR-125a-5p and MiR-125b
-
Kim J.K., Noh J.H., Jung K.H., Eun J.W., Bae H.J., Kim M.G., Chang Y.G., Shen Q., Park W.S., Lee J.Y., Borlak J., Nam S.W. Sirtuin7 oncogenic potential in human hepatocellular carcinoma and its regulation by the tumor suppressors MiR-125a-5p and MiR-125b. Hepatology 2013, 57:1055-1067.
-
(2013)
Hepatology
, vol.57
, pp. 1055-1067
-
-
Kim, J.K.1
Noh, J.H.2
Jung, K.H.3
Eun, J.W.4
Bae, H.J.5
Kim, M.G.6
Chang, Y.G.7
Shen, Q.8
Park, W.S.9
Lee, J.Y.10
Borlak, J.11
Nam, S.W.12
-
199
-
-
84903823510
-
Overexpression of sirt7 exhibits oncogenic property and serves as a prognostic factor in colorectal cancer
-
Yu H., Ye W., Wu J., Meng X., Liu R.Y., Ying X., Zhou Y., Wang H., Pan C., Huang W. Overexpression of sirt7 exhibits oncogenic property and serves as a prognostic factor in colorectal cancer. Clin. Cancer Res. 2014, 20:3434-3445.
-
(2014)
Clin. Cancer Res.
, vol.20
, pp. 3434-3445
-
-
Yu, H.1
Ye, W.2
Wu, J.3
Meng, X.4
Liu, R.Y.5
Ying, X.6
Zhou, Y.7
Wang, H.8
Pan, C.9
Huang, W.10
-
200
-
-
84891761857
-
Sirtuin 7 plays a role in ribosome biogenesis and protein synthesis
-
Tsai Y.C., Greco T.M., Cristea I.M. Sirtuin 7 plays a role in ribosome biogenesis and protein synthesis. Mol. Cell. Proteomics 2014, 13:73-83.
-
(2014)
Mol. Cell. Proteomics
, vol.13
, pp. 73-83
-
-
Tsai, Y.C.1
Greco, T.M.2
Cristea, I.M.3
-
201
-
-
84880558721
-
Sirtuin-7 inhibits the activity of hypoxia-inducible factors
-
Hubbi M.E., Hu H., Kshitiz D.M.Gilkes, Semenza G.L. Sirtuin-7 inhibits the activity of hypoxia-inducible factors. J. Biol. Chem. 2013, 288:20768-20775.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 20768-20775
-
-
Hubbi, M.E.1
Hu, H.2
Kshitiz, D.M.G.3
Semenza, G.L.4
-
202
-
-
84887613799
-
SIRT7 represses Myc activity to suppress ER stress and prevent fatty liver disease
-
Shin J., He M., Liu Y., Paredes S., Villanova L., Brown K., Qiu X., Nabavi N., Mohrin M., Wojnoonski K., Li P., Cheng H.L., Murphy A.J., Valenzuela D.M., Luo H., Kapahi P., Krauss R., Mostoslavsky R., Yancopoulos G.D., Alt F.W., Chua K.F., Chen D. SIRT7 represses Myc activity to suppress ER stress and prevent fatty liver disease. Cell Rep. 2013, 5:654-665.
-
(2013)
Cell Rep.
, vol.5
, pp. 654-665
-
-
Shin, J.1
He, M.2
Liu, Y.3
Paredes, S.4
Villanova, L.5
Brown, K.6
Qiu, X.7
Nabavi, N.8
Mohrin, M.9
Wojnoonski, K.10
Li, P.11
Cheng, H.L.12
Murphy, A.J.13
Valenzuela, D.M.14
Luo, H.15
Kapahi, P.16
Krauss, R.17
Mostoslavsky, R.18
Yancopoulos, G.D.19
Alt, F.W.20
Chua, K.F.21
Chen, D.22
more..
-
203
-
-
84897484512
-
SIRT7 controls hepatic lipid metabolism by regulating the ubiquitin-proteasome pathway
-
Yoshizawa T., Karim M.F., Sato Y., Senokuchi T., Miyata K., Fukuda T., Go C., Tasaki M., Uchimura K., Kadomatsu T., Tian Z., Smolka C., Sawa T., Takeya M., Tomizawa K., Ando Y., Araki E., Akaike T., Braun T., Oike Y., Bober E., Yamagata K. SIRT7 controls hepatic lipid metabolism by regulating the ubiquitin-proteasome pathway. Cell Metab. 2014, 19:712-721.
-
(2014)
Cell Metab.
, vol.19
, pp. 712-721
-
-
Yoshizawa, T.1
Karim, M.F.2
Sato, Y.3
Senokuchi, T.4
Miyata, K.5
Fukuda, T.6
Go, C.7
Tasaki, M.8
Uchimura, K.9
Kadomatsu, T.10
Tian, Z.11
Smolka, C.12
Sawa, T.13
Takeya, M.14
Tomizawa, K.15
Ando, Y.16
Araki, E.17
Akaike, T.18
Braun, T.19
Oike, Y.20
Bober, E.21
Yamagata, K.22
more..
-
204
-
-
84920815242
-
The crucial roles of apolipoproteins E and C-III in apoB lipoprotein metabolism in normolipidemia and hypertriglyceridemia
-
Sacks F.M. The crucial roles of apolipoproteins E and C-III in apoB lipoprotein metabolism in normolipidemia and hypertriglyceridemia. Curr. Opin. Lipidol. 2015, 26:56-63.
-
(2015)
Curr. Opin. Lipidol.
, vol.26
, pp. 56-63
-
-
Sacks, F.M.1
-
205
-
-
0033214237
-
The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms
-
Kaeberlein M., McVey M., Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 1999, 13:2570-2580.
-
(1999)
Genes Dev.
, vol.13
, pp. 2570-2580
-
-
Kaeberlein, M.1
McVey, M.2
Guarente, L.3
-
206
-
-
84886768309
-
Increased expression of Drosophila Sir2 extends life span in a dose-dependent manner
-
Whitaker R., Faulkner S., Miyokawa R., Burhenn L., Henriksen M., Wood J.G., Helfand S.L. Increased expression of Drosophila Sir2 extends life span in a dose-dependent manner. Aging 2013, 5:682-691.
-
(2013)
Aging
, vol.5
, pp. 682-691
-
-
Whitaker, R.1
Faulkner, S.2
Miyokawa, R.3
Burhenn, L.4
Henriksen, M.5
Wood, J.G.6
Helfand, S.L.7
-
207
-
-
0034703217
-
Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae
-
Lin S.J., Defossez P.A., Guarente L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 2000, 289:2126-2128.
-
(2000)
Science
, vol.289
, pp. 2126-2128
-
-
Lin, S.J.1
Defossez, P.A.2
Guarente, L.3
-
208
-
-
0037130175
-
Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration
-
Lin S.J., Kaeberlein M., Andalis A.A., Sturtz L.A., Defossez P.A., Culotta V.C., Fink G.R., Guarente L. Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 2002, 418:344-348.
-
(2002)
Nature
, vol.418
, pp. 344-348
-
-
Lin, S.J.1
Kaeberlein, M.2
Andalis, A.A.3
Sturtz, L.A.4
Defossez, P.A.5
Culotta, V.C.6
Fink, G.R.7
Guarente, L.8
-
209
-
-
0038329323
-
Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae
-
Anderson R.M., Bitterman K.J., Wood J.G., Medvedik O., Sinclair D.A. Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature 2003, 423:181-185.
-
(2003)
Nature
, vol.423
, pp. 181-185
-
-
Anderson, R.M.1
Bitterman, K.J.2
Wood, J.G.3
Medvedik, O.4
Sinclair, D.A.5
-
210
-
-
84916931081
-
NAD(+) metabolism in age-related hearing loss
-
Kim H.J., Oh G.S., Choe S.K., Kwak T.H., Park R., So H.S. NAD(+) metabolism in age-related hearing loss. Aging Dis. 2014, 5:150-159.
-
(2014)
Aging Dis.
, vol.5
, pp. 150-159
-
-
Kim, H.J.1
Oh, G.S.2
Choe, S.K.3
Kwak, T.H.4
Park, R.5
So, H.S.6
-
211
-
-
27744511769
-
Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients
-
Kaeberlein M., Powers R.W., Steffen K.K., Westman E.A., Hu D., Dang N., Kerr E.O., Kirkland K.T., Fields S., Kennedy B.K. Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 2005, 310:1193-1196.
-
(2005)
Science
, vol.310
, pp. 1193-1196
-
-
Kaeberlein, M.1
Powers, R.W.2
Steffen, K.K.3
Westman, E.A.4
Hu, D.5
Dang, N.6
Kerr, E.O.7
Kirkland, K.T.8
Fields, S.9
Kennedy, B.K.10
-
212
-
-
35648995939
-
MSN2 and MSN4 link calorie restriction and TOR to sirtuin-mediated lifespan extension in Saccharomyces cerevisiae
-
Medvedik O., Lamming D.W., Kim K.D., Sinclair D.A. MSN2 and MSN4 link calorie restriction and TOR to sirtuin-mediated lifespan extension in Saccharomyces cerevisiae. PLoS Biol. 2007, 5.
-
(2007)
PLoS Biol.
, vol.5
-
-
Medvedik, O.1
Lamming, D.W.2
Kim, K.D.3
Sinclair, D.A.4
-
213
-
-
3943071801
-
Sirtuin activators mimic caloric restriction and delay ageing in metazoans
-
Wood J.G., Rogina B., Lavu S., Howitz K., Helfand S.L., Tatar M., Sinclair D. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 2004, 430:686-689.
-
(2004)
Nature
, vol.430
, pp. 686-689
-
-
Wood, J.G.1
Rogina, B.2
Lavu, S.3
Howitz, K.4
Helfand, S.L.5
Tatar, M.6
Sinclair, D.7
-
214
-
-
24944559665
-
HST2 mediates SIR2-independent life-span extension by calorie restriction
-
Lamming D.W., Latorre-Esteves M., Medvedik O., Wong S.N., Tsang F.A., Wang C., Lin S.J., Sinclair D.A. HST2 mediates SIR2-independent life-span extension by calorie restriction. Science 2005, 309:1861-1864.
-
(2005)
Science
, vol.309
, pp. 1861-1864
-
-
Lamming, D.W.1
Latorre-Esteves, M.2
Medvedik, O.3
Wong, S.N.4
Tsang, F.A.5
Wang, C.6
Lin, S.J.7
Sinclair, D.A.8
-
216
-
-
33751242797
-
Sirtuin-independent effects of nicotinamide on lifespan extension from calorie restriction in yeast
-
Tsuchiya M., Dang N., Kerr E.O., Hu D., Steffen K.K., Oakes J.A., Kennedy B.K., Kaeberlein M. Sirtuin-independent effects of nicotinamide on lifespan extension from calorie restriction in yeast. Aging Cell 2006, 5:505-514.
-
(2006)
Aging Cell
, vol.5
, pp. 505-514
-
-
Tsuchiya, M.1
Dang, N.2
Kerr, E.O.3
Hu, D.4
Steffen, K.K.5
Oakes, J.A.6
Kennedy, B.K.7
Kaeberlein, M.8
-
217
-
-
33745131114
-
Comment on "HST2 mediates SIR2-independent life-span extension by calorie restriction"
-
(author reply 1312)
-
Kaeberlein M., Steffen K.K., Hu D., Dang N., Kerr E.O., Tsuchiya M., Fields S., Kennedy B.K. Comment on "HST2 mediates SIR2-independent life-span extension by calorie restriction". Science 2006, 312:1312. (author reply 1312).
-
(2006)
Science
, vol.312
, pp. 1312
-
-
Kaeberlein, M.1
Steffen, K.K.2
Hu, D.3
Dang, N.4
Kerr, E.O.5
Tsuchiya, M.6
Fields, S.7
Kennedy, B.K.8
-
218
-
-
27744596999
-
Sir2 blocks extreme life-span extension
-
Fabrizio P., Gattazzo C., Battistella L., Wei M., Cheng C., McGrew K., Longo V.D. Sir2 blocks extreme life-span extension. Cell 2005, 123:655-667.
-
(2005)
Cell
, vol.123
, pp. 655-667
-
-
Fabrizio, P.1
Gattazzo, C.2
Battistella, L.3
Wei, M.4
Cheng, C.5
McGrew, K.6
Longo, V.D.7
-
219
-
-
33744976074
-
C. elegans SIR-2.1 interacts with 14-3-3 proteins to activate DAF-16 and extend life span
-
Berdichevsky A., Viswanathan M., Horvitz H.R., Guarente L. C. elegans SIR-2.1 interacts with 14-3-3 proteins to activate DAF-16 and extend life span. Cell 2006, 125:1165-1177.
-
(2006)
Cell
, vol.125
, pp. 1165-1177
-
-
Berdichevsky, A.1
Viswanathan, M.2
Horvitz, H.R.3
Guarente, L.4
-
220
-
-
0034967720
-
Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling
-
Lin K., Hsin H., Libina N., Kenyon C. Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nat. Genet. 2001, 28:139-145.
-
(2001)
Nat. Genet.
, vol.28
, pp. 139-145
-
-
Lin, K.1
Hsin, H.2
Libina, N.3
Kenyon, C.4
-
221
-
-
75149128169
-
The life span-prolonging effect of sirtuin-1 is mediated by autophagy
-
Morselli E., Maiuri M.C., Markaki M., Megalou E., Pasparaki A., Palikaras K., Criollo A., Galluzzi L., Malik S.A., Vitale I., Michaud M., Madeo F., Tavernarakis N., Kroemer G. The life span-prolonging effect of sirtuin-1 is mediated by autophagy. Autophagy 2010, 6:186-188.
-
(2010)
Autophagy
, vol.6
, pp. 186-188
-
-
Morselli, E.1
Maiuri, M.C.2
Markaki, M.3
Megalou, E.4
Pasparaki, A.5
Palikaras, K.6
Criollo, A.7
Galluzzi, L.8
Malik, S.A.9
Vitale, I.10
Michaud, M.11
Madeo, F.12
Tavernarakis, N.13
Kroemer, G.14
-
222
-
-
84871695502
-
DSir2 in the adult fat body, but not in muscles, regulates life span in a diet-dependent manner
-
Banerjee K.K., Ayyub C., Ali S.Z., Mandot V., Prasad N.G., Kolthur-Seetharam U. dSir2 in the adult fat body, but not in muscles, regulates life span in a diet-dependent manner. Cell Rep. 2012, 2:1485-1491.
-
(2012)
Cell Rep.
, vol.2
, pp. 1485-1491
-
-
Banerjee, K.K.1
Ayyub, C.2
Ali, S.Z.3
Mandot, V.4
Prasad, N.G.5
Kolthur-Seetharam, U.6
-
223
-
-
84877648303
-
Overexpression of Sir2 in the adult fat body is sufficient to extend lifespan of male and female Drosophila
-
Hoffmann J., Romey R., Fink C., Yong L., Roeder T. Overexpression of Sir2 in the adult fat body is sufficient to extend lifespan of male and female Drosophila. Aging 2013, 5:315-327.
-
(2013)
Aging
, vol.5
, pp. 315-327
-
-
Hoffmann, J.1
Romey, R.2
Fink, C.3
Yong, L.4
Roeder, T.5
-
224
-
-
84891947918
-
Loss-of-SIRT1 function during vascular ageing: hyperphosphorylation mediated by cyclin-dependent kinase 5
-
Bai B., Vanhoutte P.M., Wang Y. Loss-of-SIRT1 function during vascular ageing: hyperphosphorylation mediated by cyclin-dependent kinase 5. Trends Cardiovasc. Med. 2014, 24:81-84.
-
(2014)
Trends Cardiovasc. Med.
, vol.24
, pp. 81-84
-
-
Bai, B.1
Vanhoutte, P.M.2
Wang, Y.3
-
225
-
-
84895925833
-
The SIRT1 activator SRT1720 extends lifespan and improves health of mice fed a standard diet
-
Mitchell S.J., Martin-Montalvo A., Mercken E.M., Palacios H.H., Ward T.M., Abulwerdi G., Minor R.K., Vlasuk G.P., Ellis J.L., Sinclair D.A., Dawson J., Allison D.B., Zhang Y., Becker K.G., Bernier M., de Cabo R. The SIRT1 activator SRT1720 extends lifespan and improves health of mice fed a standard diet. Cell Rep. 2014, 6:836-843.
-
(2014)
Cell Rep.
, vol.6
, pp. 836-843
-
-
Mitchell, S.J.1
Martin-Montalvo, A.2
Mercken, E.M.3
Palacios, H.H.4
Ward, T.M.5
Abulwerdi, G.6
Minor, R.K.7
Vlasuk, G.P.8
Ellis, J.L.9
Sinclair, D.A.10
Dawson, J.11
Allison, D.B.12
Zhang, Y.13
Becker, K.G.14
Bernier, M.15
de Cabo, R.16
-
226
-
-
33748331132
-
Progressive loss of SIRT1 with cell cycle withdrawal
-
Sasaki T., Maier B., Bartke A., Scrable H. Progressive loss of SIRT1 with cell cycle withdrawal. Aging Cell 2006, 5:413-422.
-
(2006)
Aging Cell
, vol.5
, pp. 413-422
-
-
Sasaki, T.1
Maier, B.2
Bartke, A.3
Scrable, H.4
-
227
-
-
0037093346
-
Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence
-
Langley E., Pearson M., Faretta M., Bauer U.M., Frye R.A., Minucci S., Pelicci P.G., Kouzarides T. Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J. 2002, 21:2383-2396.
-
(2002)
EMBO J.
, vol.21
, pp. 2383-2396
-
-
Langley, E.1
Pearson, M.2
Faretta, M.3
Bauer, U.M.4
Frye, R.A.5
Minucci, S.6
Pelicci, P.G.7
Kouzarides, T.8
-
228
-
-
39649100868
-
Regulation of SIRT6 protein levels by nutrient availability
-
Kanfi Y., Shalman R., Peshti V., Pilosof S.N., Gozlan Y.M., Pearson K.J., Lerrer B., Moazed D., Marine J.C., de Cabo R., Cohen H.Y. Regulation of SIRT6 protein levels by nutrient availability. FEBS Lett. 2008, 582:543-548.
-
(2008)
FEBS Lett.
, vol.582
, pp. 543-548
-
-
Kanfi, Y.1
Shalman, R.2
Peshti, V.3
Pilosof, S.N.4
Gozlan, Y.M.5
Pearson, K.J.6
Lerrer, B.7
Moazed, D.8
Marine, J.C.9
de Cabo, R.10
Cohen, H.Y.11
-
229
-
-
84895089601
-
Age-related decrease in the mitochondrial sirtuin deacetylase Sirt3 expression associated with ROS accumulation in the auditory cortex of the mimetic aging rat model
-
Zeng L., Yang Y., Hu Y., Sun Y., Du Z., Xie Z., Zhou T., Kong W. Age-related decrease in the mitochondrial sirtuin deacetylase Sirt3 expression associated with ROS accumulation in the auditory cortex of the mimetic aging rat model. PLoS One 2014, 9.
-
(2014)
PLoS One
, vol.9
-
-
Zeng, L.1
Yang, Y.2
Hu, Y.3
Sun, Y.4
Du, Z.5
Xie, Z.6
Zhou, T.7
Kong, W.8
-
230
-
-
84895744576
-
Regulation of MnSOD enzymatic activity by Sirt3 connects the mitochondrial acetylome signaling networks to aging and carcinogenesis
-
Tao R., Vassilopoulos A., Parisiadou L., Yan Y., Gius D. Regulation of MnSOD enzymatic activity by Sirt3 connects the mitochondrial acetylome signaling networks to aging and carcinogenesis. Antioxid. Redox Signal. 2014, 20:1646-1654.
-
(2014)
Antioxid. Redox Signal.
, vol.20
, pp. 1646-1654
-
-
Tao, R.1
Vassilopoulos, A.2
Parisiadou, L.3
Yan, Y.4
Gius, D.5
-
231
-
-
84893442805
-
Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging
-
Gomes A.P., Price N.L., Ling A.J., Moslehi J.J., Montgomery M.K., Rajman L., White J.P., Teodoro J.S., Wrann C.D., Hubbard B.P., Mercken E.M., Palmeira C.M., de Cabo R., Rolo A.P., Turner N., Bell E.L., Sinclair D.A. Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 2013, 155:1624-1638.
-
(2013)
Cell
, vol.155
, pp. 1624-1638
-
-
Gomes, A.P.1
Price, N.L.2
Ling, A.J.3
Moslehi, J.J.4
Montgomery, M.K.5
Rajman, L.6
White, J.P.7
Teodoro, J.S.8
Wrann, C.D.9
Hubbard, B.P.10
Mercken, E.M.11
Palmeira, C.M.12
de Cabo, R.13
Rolo, A.P.14
Turner, N.15
Bell, E.L.16
Sinclair, D.A.17
-
232
-
-
64549127790
-
PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure
-
Canto C., Auwerx J. PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr. Opin. Lipidol. 2009, 20:98-105.
-
(2009)
Curr. Opin. Lipidol.
, vol.20
, pp. 98-105
-
-
Canto, C.1
Auwerx, J.2
-
233
-
-
83455206803
-
Targeting sirtuin 1 to improve metabolism: all you need is NAD(+)?
-
Canto C., Auwerx J. Targeting sirtuin 1 to improve metabolism: all you need is NAD(+)?. Pharmacol. Rev. 2012, 64:166-187.
-
(2012)
Pharmacol. Rev.
, vol.64
, pp. 166-187
-
-
Canto, C.1
Auwerx, J.2
-
234
-
-
78650172708
-
Silent information regulator 1 protects the heart from ischemia/reperfusion
-
Hsu C.P., Zhai P., Yamamoto T., Maejima Y., Matsushima S., Hariharan N., Shao D., Takagi H., Oka S., Sadoshima J. Silent information regulator 1 protects the heart from ischemia/reperfusion. Circulation 2010, 122:2170-2182.
-
(2010)
Circulation
, vol.122
, pp. 2170-2182
-
-
Hsu, C.P.1
Zhai, P.2
Yamamoto, T.3
Maejima, Y.4
Matsushima, S.5
Hariharan, N.6
Shao, D.7
Takagi, H.8
Oka, S.9
Sadoshima, J.10
-
235
-
-
84859067589
-
Resveratrol improves cardiac contractility following trauma-hemorrhage by modulating Sirt1
-
Jian B., Yang S., Chaudry I.H., Raju R. Resveratrol improves cardiac contractility following trauma-hemorrhage by modulating Sirt1. Mol. Med. 2012, 18:209-214.
-
(2012)
Mol. Med.
, vol.18
, pp. 209-214
-
-
Jian, B.1
Yang, S.2
Chaudry, I.H.3
Raju, R.4
-
236
-
-
70349208608
-
Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice
-
Sundaresan N.R., Gupta M., Kim G., Rajamohan S.B., Isbatan A., Gupta M.P. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J. Clin. Invest. 2009, 119:2758-2771.
-
(2009)
J. Clin. Invest.
, vol.119
, pp. 2758-2771
-
-
Sundaresan, N.R.1
Gupta, M.2
Kim, G.3
Rajamohan, S.B.4
Isbatan, A.5
Gupta, M.P.6
-
237
-
-
77957226368
-
Mechanism of cardioprotection by early ischemic preconditioning
-
Yang X., Cohen M.V., Downey J.M. Mechanism of cardioprotection by early ischemic preconditioning. Cardiovasc. Drugs Ther. 2010, 24:225-234.
-
(2010)
Cardiovasc. Drugs Ther.
, vol.24
, pp. 225-234
-
-
Yang, X.1
Cohen, M.V.2
Downey, J.M.3
-
238
-
-
80053226539
-
SIRT1-mediated acute cardioprotection
-
Nadtochiy S.M., Yao H., McBurney M.W., Gu W., Guarente L., Rahman I., Brookes P.S. SIRT1-mediated acute cardioprotection. Am. J. Physiol. Heart Circ. Physiol. 2011, 301:H1506-H1512.
-
(2011)
Am. J. Physiol. Heart Circ. Physiol.
, vol.301
, pp. H1506-H1512
-
-
Nadtochiy, S.M.1
Yao, H.2
McBurney, M.W.3
Gu, W.4
Guarente, L.5
Rahman, I.6
Brookes, P.S.7
-
239
-
-
62249110887
-
Resveratrol pretreatment protects rat brain from cerebral ischemic damage via a sirtuin 1-uncoupling protein 2 pathway
-
Della-Morte D., Dave K.R., DeFazio R.A., Bao Y.C., Raval A.P., Perez-Pinzon M.A. Resveratrol pretreatment protects rat brain from cerebral ischemic damage via a sirtuin 1-uncoupling protein 2 pathway. Neuroscience 2009, 159:993-1002.
-
(2009)
Neuroscience
, vol.159
, pp. 993-1002
-
-
Della-Morte, D.1
Dave, K.R.2
DeFazio, R.A.3
Bao, Y.C.4
Raval, A.P.5
Perez-Pinzon, M.A.6
-
240
-
-
0019395306
-
Myosin isoenzyme changes in several models of rat cardiac hypertrophy
-
Mercadier J.J., Lompre A.M., Wisnewsky C., Samuel J.L., Bercovici J., Swynghedauw B., Schwartz K. Myosin isoenzyme changes in several models of rat cardiac hypertrophy. Circ. Res. 1981, 49:525-532.
-
(1981)
Circ. Res.
, vol.49
, pp. 525-532
-
-
Mercadier, J.J.1
Lompre, A.M.2
Wisnewsky, C.3
Samuel, J.L.4
Bercovici, J.5
Swynghedauw, B.6
Schwartz, K.7
-
241
-
-
41549134383
-
Activation of SIRT1, a class III histone deacetylase, contributes to fructose feeding-mediated induction of the alpha-myosin heavy chain expression
-
Pillai J.B., Chen M., Rajamohan S.B., Samant S., Pillai V.B., Gupta M., Gupta M.P. Activation of SIRT1, a class III histone deacetylase, contributes to fructose feeding-mediated induction of the alpha-myosin heavy chain expression. Am. J. Physiol. Heart Circ. Physiol. 2008, 294:H1388-H1397.
-
(2008)
Am. J. Physiol. Heart Circ. Physiol.
, vol.294
, pp. H1388-H1397
-
-
Pillai, J.B.1
Chen, M.2
Rajamohan, S.B.3
Samant, S.4
Pillai, V.B.5
Gupta, M.6
Gupta, M.P.7
-
242
-
-
70149095672
-
Nicotinamide phosphoribosyltransferase regulates cell survival through NAD+ synthesis in cardiac myocytes
-
Hsu C.P., Oka S., Shao D., Hariharan N., Sadoshima J. Nicotinamide phosphoribosyltransferase regulates cell survival through NAD+ synthesis in cardiac myocytes. Circ. Res. 2009, 105:481-491.
-
(2009)
Circ. Res.
, vol.105
, pp. 481-491
-
-
Hsu, C.P.1
Oka, S.2
Shao, D.3
Hariharan, N.4
Sadoshima, J.5
-
243
-
-
84873293264
-
Nampt secreted from cardiomyocytes promotes development of cardiac hypertrophy and adverse ventricular remodeling
-
Pillai V.B., Sundaresan N.R., Kim G., Samant S., Moreno-Vinasco L., Garcia J.G., Gupta M.P. Nampt secreted from cardiomyocytes promotes development of cardiac hypertrophy and adverse ventricular remodeling. Am. J. Physiol. Heart Circ. Physiol. 2013, 304:H415-H426.
-
(2013)
Am. J. Physiol. Heart Circ. Physiol.
, vol.304
, pp. H415-H426
-
-
Pillai, V.B.1
Sundaresan, N.R.2
Kim, G.3
Samant, S.4
Moreno-Vinasco, L.5
Garcia, J.G.6
Gupta, M.P.7
-
244
-
-
84871547822
-
Loss of cardioprotection with ischemic preconditioning in aging hearts: role of sirtuin 1?
-
Adam T., Sharp S., Opie L.H., Lecour S. Loss of cardioprotection with ischemic preconditioning in aging hearts: role of sirtuin 1?. J. Cardiovasc. Pharmacol. Ther. 2013, 18:46-53.
-
(2013)
J. Cardiovasc. Pharmacol. Ther.
, vol.18
, pp. 46-53
-
-
Adam, T.1
Sharp, S.2
Opie, L.H.3
Lecour, S.4
-
245
-
-
18744416824
-
Longevity regulation by Drosophila Rpd3 deacetylase and caloric restriction
-
Rogina B., Helfand S.L., Frankel S. Longevity regulation by Drosophila Rpd3 deacetylase and caloric restriction. Science 2002, 298:1745.
-
(2002)
Science
, vol.298
, pp. 1745
-
-
Rogina, B.1
Helfand, S.L.2
Frankel, S.3
-
246
-
-
0032573178
-
The genetics of caloric restriction in Caenorhabditis elegans
-
Lakowski B., Hekimi S. The genetics of caloric restriction in Caenorhabditis elegans. Proc. Natl. Acad. Sci. U. S. A. 1998, 95:13091-13096.
-
(1998)
Proc. Natl. Acad. Sci. U. S. A.
, vol.95
, pp. 13091-13096
-
-
Lakowski, B.1
Hekimi, S.2
-
247
-
-
22244460795
-
Short-term caloric restriction improves ischemic tolerance independent of opening of ATP-sensitive K+ channels in both young and aged hearts
-
Shinmura K., Tamaki K., Bolli R. Short-term caloric restriction improves ischemic tolerance independent of opening of ATP-sensitive K+ channels in both young and aged hearts. J. Mol. Cell. Cardiol. 2005, 39:285-296.
-
(2005)
J. Mol. Cell. Cardiol.
, vol.39
, pp. 285-296
-
-
Shinmura, K.1
Tamaki, K.2
Bolli, R.3
-
248
-
-
57349200508
-
Impact of 6-mo caloric restriction on myocardial ischemic tolerance: possible involvement of nitric oxide-dependent increase in nuclear Sirt1
-
Shinmura K., Tamaki K., Bolli R. Impact of 6-mo caloric restriction on myocardial ischemic tolerance: possible involvement of nitric oxide-dependent increase in nuclear Sirt1. Am. J. Physiol. Heart Circ. Physiol. 2008, 295:H2348-H2355.
-
(2008)
Am. J. Physiol. Heart Circ. Physiol.
, vol.295
, pp. H2348-H2355
-
-
Shinmura, K.1
Tamaki, K.2
Bolli, R.3
-
249
-
-
84902579141
-
Nicotinamide mononucleotide, an intermediate of NAD+ synthesis, protects the heart from ischemia and reperfusion
-
Yamamoto T., Byun J., Zhai P., Ikeda Y., Oka S., Sadoshima J. Nicotinamide mononucleotide, an intermediate of NAD+ synthesis, protects the heart from ischemia and reperfusion. PLoS One 2014, 9.
-
(2014)
PLoS One
, vol.9
-
-
Yamamoto, T.1
Byun, J.2
Zhai, P.3
Ikeda, Y.4
Oka, S.5
Sadoshima, J.6
-
250
-
-
80051802678
-
Caloric restriction primes mitochondria for ischemic stress by deacetylating specific mitochondrial proteins of the electron transport chain
-
Shinmura K., Tamaki K., Sano M., Nakashima-Kamimura N., Wolf A.M., Amo T., Ohta S., Katsumata Y., Fukuda K., Ishiwata K., Suematsu M., Adachi T. Caloric restriction primes mitochondria for ischemic stress by deacetylating specific mitochondrial proteins of the electron transport chain. Circ. Res. 2011, 109:396-406.
-
(2011)
Circ. Res.
, vol.109
, pp. 396-406
-
-
Shinmura, K.1
Tamaki, K.2
Sano, M.3
Nakashima-Kamimura, N.4
Wolf, A.M.5
Amo, T.6
Ohta, S.7
Katsumata, Y.8
Fukuda, K.9
Ishiwata, K.10
Suematsu, M.11
Adachi, T.12
-
251
-
-
84937544271
-
Resveratrol improves survival and prolongs life following hemorrhagic shock
-
Ayub A., Poulose N., Raju R. Resveratrol improves survival and prolongs life following hemorrhagic shock. Mol. Med. 2015, 21:305-312.
-
(2015)
Mol. Med.
, vol.21
, pp. 305-312
-
-
Ayub, A.1
Poulose, N.2
Raju, R.3
-
252
-
-
84896350230
-
Resveratrol restores sirtuin 1 (SIRT1) activity and pyruvate dehydrogenase kinase 1 (PDK1) expression after hemorrhagic injury in a rat model
-
Jian B., Yang S., Chaudry I.H., Raju R. Resveratrol restores sirtuin 1 (SIRT1) activity and pyruvate dehydrogenase kinase 1 (PDK1) expression after hemorrhagic injury in a rat model. Mol. Med. 2014, 20:10-16.
-
(2014)
Mol. Med.
, vol.20
, pp. 10-16
-
-
Jian, B.1
Yang, S.2
Chaudry, I.H.3
Raju, R.4
-
253
-
-
84894087243
-
Resveratrol attenuates hypoxic injury in a primary hepatocyte model of hemorrhagic shock and resuscitation
-
Powell R.D., Swet J.H., Kennedy K.L., Huynh T.T., McKillop I.H., Evans S.L. Resveratrol attenuates hypoxic injury in a primary hepatocyte model of hemorrhagic shock and resuscitation. J. Trauma Acute Care Surg. 2014, 76:409-417.
-
(2014)
J. Trauma Acute Care Surg.
, vol.76
, pp. 409-417
-
-
Powell, R.D.1
Swet, J.H.2
Kennedy, K.L.3
Huynh, T.T.4
McKillop, I.H.5
Evans, S.L.6
-
254
-
-
84918524934
-
Resveratrol ameliorates mitochondrial dysfunction but increases the risk of hypoglycemia following hemorrhagic shock
-
Wang H., Guan Y., Widlund A.L., Becker L.B., Baur J.A., Reilly P.M., Sims C.A. Resveratrol ameliorates mitochondrial dysfunction but increases the risk of hypoglycemia following hemorrhagic shock. J. Trauma Acute Care Surg. 2014, 77:926-933.
-
(2014)
J. Trauma Acute Care Surg.
, vol.77
, pp. 926-933
-
-
Wang, H.1
Guan, Y.2
Widlund, A.L.3
Becker, L.B.4
Baur, J.A.5
Reilly, P.M.6
Sims, C.A.7
-
255
-
-
79955547569
-
Role of estrogen receptor-dependent upregulation of P38 MAPK/heme oxygenase 1 in resveratrol-mediated attenuation of intestinal injury after trauma-hemorrhage
-
Yu H.P., Hwang T.L., Hsieh P.W., Lau Y.T. Role of estrogen receptor-dependent upregulation of P38 MAPK/heme oxygenase 1 in resveratrol-mediated attenuation of intestinal injury after trauma-hemorrhage. Shock 2011, 35:517-523.
-
(2011)
Shock
, vol.35
, pp. 517-523
-
-
Yu, H.P.1
Hwang, T.L.2
Hsieh, P.W.3
Lau, Y.T.4
-
256
-
-
80555146753
-
Hepatic Sirt1 deficiency in mice impairs mTorc2/Akt signaling and results in hyperglycemia, oxidative damage, and insulin resistance
-
Wang R.H., Kim H.S., Xiao C., Xu X., Gavrilova O., Deng C.X. Hepatic Sirt1 deficiency in mice impairs mTorc2/Akt signaling and results in hyperglycemia, oxidative damage, and insulin resistance. J. Clin. Invest. 2011, 121:4477-4490.
-
(2011)
J. Clin. Invest.
, vol.121
, pp. 4477-4490
-
-
Wang, R.H.1
Kim, H.S.2
Xiao, C.3
Xu, X.4
Gavrilova, O.5
Deng, C.X.6
-
257
-
-
65249185780
-
Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes
-
Rane S., He M., Sayed D., Vashistha H., Malhotra A., Sadoshima J., Vatner D.E., Vatner S.F., Abdellatif M. Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circ. Res. 2009, 104:879-886.
-
(2009)
Circ. Res.
, vol.104
, pp. 879-886
-
-
Rane, S.1
He, M.2
Sayed, D.3
Vashistha, H.4
Malhotra, A.5
Sadoshima, J.6
Vatner, D.E.7
Vatner, S.F.8
Abdellatif, M.9
-
258
-
-
77953386141
-
Local IGF-1 isoform protects cardiomyocytes from hypertrophic and oxidative stresses via SirT1 activity
-
Vinciguerra M., Santini M.P., Claycomb W.C., Ladurner A.G., Rosenthal N. Local IGF-1 isoform protects cardiomyocytes from hypertrophic and oxidative stresses via SirT1 activity. Aging 2010, 2:43-62.
-
(2010)
Aging
, vol.2
, pp. 43-62
-
-
Vinciguerra, M.1
Santini, M.P.2
Claycomb, W.C.3
Ladurner, A.G.4
Rosenthal, N.5
-
259
-
-
84862891482
-
SIRT1 modulates MAPK pathways in ischemic-reperfused cardiomyocytes
-
Becatti M., Taddei N., Cecchi C., Nassi N., Nassi P.A., Fiorillo C. SIRT1 modulates MAPK pathways in ischemic-reperfused cardiomyocytes. Cell. Mol. Life Sci. 2012, 69:2245-2260.
-
(2012)
Cell. Mol. Life Sci.
, vol.69
, pp. 2245-2260
-
-
Becatti, M.1
Taddei, N.2
Cecchi, C.3
Nassi, N.4
Nassi, P.A.5
Fiorillo, C.6
-
260
-
-
84897943786
-
Sirtuin 1 (SIRT1) activation mediates sildenafil induced delayed cardioprotection against ischemia-reperfusion injury in mice
-
Shalwala M., Zhu S.G., Das A., Salloum F.N., Xi L., Kukreja R.C. Sirtuin 1 (SIRT1) activation mediates sildenafil induced delayed cardioprotection against ischemia-reperfusion injury in mice. PLoS One 2014, 9.
-
(2014)
PLoS One
, vol.9
-
-
Shalwala, M.1
Zhu, S.G.2
Das, A.3
Salloum, F.N.4
Xi, L.5
Kukreja, R.C.6
-
261
-
-
33845601790
-
Silibinin protects against isoproterenol-induced rat cardiac myocyte injury through mitochondrial pathway after up-regulation of SIRT1
-
Zhou B., Wu L.J., Li L.H., Tashiro S., Onodera S., Uchiumi F., Ikejima T. Silibinin protects against isoproterenol-induced rat cardiac myocyte injury through mitochondrial pathway after up-regulation of SIRT1. J. Pharmacol. Sci. 2006, 102:387-395.
-
(2006)
J. Pharmacol. Sci.
, vol.102
, pp. 387-395
-
-
Zhou, B.1
Wu, L.J.2
Li, L.H.3
Tashiro, S.4
Onodera, S.5
Uchiumi, F.6
Ikejima, T.7
-
262
-
-
80055108043
-
Constitutive SIRT1 overexpression impairs mitochondria and reduces cardiac function in mice
-
Kawashima T., Inuzuka Y., Okuda J., Kato T., Niizuma S., Tamaki Y., Iwanaga Y., Kawamoto A., Narazaki M., Matsuda T., Adachi S., Takemura G., Kita T., Kimura T., Shioi T. Constitutive SIRT1 overexpression impairs mitochondria and reduces cardiac function in mice. J. Mol. Cell. Cardiol. 2011, 51:1026-1036.
-
(2011)
J. Mol. Cell. Cardiol.
, vol.51
, pp. 1026-1036
-
-
Kawashima, T.1
Inuzuka, Y.2
Okuda, J.3
Kato, T.4
Niizuma, S.5
Tamaki, Y.6
Iwanaga, Y.7
Kawamoto, A.8
Narazaki, M.9
Matsuda, T.10
Adachi, S.11
Takemura, G.12
Kita, T.13
Kimura, T.14
Shioi, T.15
-
263
-
-
84884995947
-
SIRT4 prevents hypoxia-induced apoptosis in H9c2 cardiomyoblast cells
-
Liu B., Che W., Xue J., Zheng C., Tang K., Zhang J., Wen J., Xu Y. SIRT4 prevents hypoxia-induced apoptosis in H9c2 cardiomyoblast cells. Cell. Physiol. Biochem. 2013, 32:655-662.
-
(2013)
Cell. Physiol. Biochem.
, vol.32
, pp. 655-662
-
-
Liu, B.1
Che, W.2
Xue, J.3
Zheng, C.4
Tang, K.5
Zhang, J.6
Wen, J.7
Xu, Y.8
-
264
-
-
84886731779
-
SIRT5: a safeguard against oxidative stress-induced apoptosis in cardiomyocytes
-
Liu B., Che W., Zheng C., Liu W., Wen J., Fu H., Tang K., Zhang J., Xu Y. SIRT5: a safeguard against oxidative stress-induced apoptosis in cardiomyocytes. Cell. Physiol. Biochem. 2013, 32:1050-1059.
-
(2013)
Cell. Physiol. Biochem.
, vol.32
, pp. 1050-1059
-
-
Liu, B.1
Che, W.2
Zheng, C.3
Liu, W.4
Wen, J.5
Fu, H.6
Tang, K.7
Zhang, J.8
Xu, Y.9
-
265
-
-
38449109732
-
Effect of post-myocardial infarction exercise training on the renin-angiotensin-aldosterone system and cardiac function
-
Wan W., Powers A.S., Li J., Ji L., Erikson J.M., Zhang J.Q. Effect of post-myocardial infarction exercise training on the renin-angiotensin-aldosterone system and cardiac function. Am. J. Med. Sci. 2007, 334:265-273.
-
(2007)
Am. J. Med. Sci.
, vol.334
, pp. 265-273
-
-
Wan, W.1
Powers, A.S.2
Li, J.3
Ji, L.4
Erikson, J.M.5
Zhang, J.Q.6
-
266
-
-
84875915714
-
The effect of high-intensity aerobic interval training on postinfarction left ventricular remodelling
-
Godfrey R., Theologou T., Dellegrottaglie S., Binukrishnan S., Wright J., Whyte G., Ellison G. The effect of high-intensity aerobic interval training on postinfarction left ventricular remodelling. BMJ Case Rep. 2013, 2013.
-
(2013)
BMJ Case Rep.
, vol.2013
-
-
Godfrey, R.1
Theologou, T.2
Dellegrottaglie, S.3
Binukrishnan, S.4
Wright, J.5
Whyte, G.6
Ellison, G.7
-
267
-
-
84896352484
-
Aerobic interval training protects against myocardial infarction-induced oxidative injury by enhancing antioxidase system and mitochondrial biosynthesis
-
Jiang H.K., Miao Y., Wang Y.H., Zhao M., Feng Z.H., Yu X.J., Liu J.K., Zang W.J. Aerobic interval training protects against myocardial infarction-induced oxidative injury by enhancing antioxidase system and mitochondrial biosynthesis. Clin. Exp. Pharmacol. Physiol. 2014, 41:192-201.
-
(2014)
Clin. Exp. Pharmacol. Physiol.
, vol.41
, pp. 192-201
-
-
Jiang, H.K.1
Miao, Y.2
Wang, Y.H.3
Zhao, M.4
Feng, Z.H.5
Yu, X.J.6
Liu, J.K.7
Zang, W.J.8
-
268
-
-
84927935627
-
Resveratrol regulates mitochondrial reactive oxygen species homeostasis through Sirt3 signaling pathway in human vascular endothelial cells
-
Zhou X., Chen M., Zeng X., Yang J., Deng H., Yi L., Mi M.T. Resveratrol regulates mitochondrial reactive oxygen species homeostasis through Sirt3 signaling pathway in human vascular endothelial cells. Cell Death Dis. 2014, 5.
-
(2014)
Cell Death Dis.
, vol.5
-
-
Zhou, X.1
Chen, M.2
Zeng, X.3
Yang, J.4
Deng, H.5
Yi, L.6
Mi, M.T.7
-
269
-
-
84900339792
-
Cardioprotective effects of rhamnetin in H9c2 cardiomyoblast cells under H(2)O(2)-induced apoptosis
-
Park E.S., Kang J.C., Jang Y.C., Park J.S., Jang S.Y., Kim D.E., Kim B., Shin H.S. Cardioprotective effects of rhamnetin in H9c2 cardiomyoblast cells under H(2)O(2)-induced apoptosis. J. Ethnopharmacol. 2014, 153:552-560.
-
(2014)
J. Ethnopharmacol.
, vol.153
, pp. 552-560
-
-
Park, E.S.1
Kang, J.C.2
Jang, Y.C.3
Park, J.S.4
Jang, S.Y.5
Kim, D.E.6
Kim, B.7
Shin, H.S.8
-
270
-
-
84902687763
-
SIRT3 deficiency exacerbates ischemia-reperfusion injury: implication for aged hearts
-
Porter G.A., Urciuoli W.R., Brookes P.S., Nadtochiy S.M. SIRT3 deficiency exacerbates ischemia-reperfusion injury: implication for aged hearts. Am. J. Physiol. Heart Circ. Physiol. 2014, 306:H1602-H1609.
-
(2014)
Am. J. Physiol. Heart Circ. Physiol.
, vol.306
, pp. H1602-H1609
-
-
Porter, G.A.1
Urciuoli, W.R.2
Brookes, P.S.3
Nadtochiy, S.M.4
-
271
-
-
84884863139
-
Oxidative stress, neurodegeneration, and the balance of protein degradation and protein synthesis
-
Dasuri K., Zhang L., Keller J.N. Oxidative stress, neurodegeneration, and the balance of protein degradation and protein synthesis. Free Radic. Biol. Med. 2013, 62:170-185.
-
(2013)
Free Radic. Biol. Med.
, vol.62
, pp. 170-185
-
-
Dasuri, K.1
Zhang, L.2
Keller, J.N.3
-
272
-
-
47349099404
-
Resveratrol and ischemic preconditioning in the brain
-
Raval A.P., Lin H.W., Dave K.R., Defazio R.A., Della Morte D., Kim E.J., Perez-Pinzon M.A. Resveratrol and ischemic preconditioning in the brain. Curr. Med. Chem. 2008, 15:1545-1551.
-
(2008)
Curr. Med. Chem.
, vol.15
, pp. 1545-1551
-
-
Raval, A.P.1
Lin, H.W.2
Dave, K.R.3
Defazio, R.A.4
Della Morte, D.5
Kim, E.J.6
Perez-Pinzon, M.A.7
-
273
-
-
84925491335
-
Idebenone and neuroprotection: antioxidant, pro-oxidant, or electron carrier?
-
Jaber S., Polster B.M. Idebenone and neuroprotection: antioxidant, pro-oxidant, or electron carrier?. J. Bioenerg. Biomembr. 2015, 47:111-118.
-
(2015)
J. Bioenerg. Biomembr.
, vol.47
, pp. 111-118
-
-
Jaber, S.1
Polster, B.M.2
-
274
-
-
4043165678
-
Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration
-
Araki T., Sasaki Y., Milbrandt J. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 2004, 305:1010-1013.
-
(2004)
Science
, vol.305
, pp. 1010-1013
-
-
Araki, T.1
Sasaki, Y.2
Milbrandt, J.3
-
275
-
-
3543148361
-
A new model of ischemic preconditioning using young adult hippocampal slice cultures
-
Hassen G.W., Tian D., Ding D., Bergold P.J. A new model of ischemic preconditioning using young adult hippocampal slice cultures. Brain Res. Brain Res. Protoc. 2004, 13:135-143.
-
(2004)
Brain Res. Brain Res. Protoc.
, vol.13
, pp. 135-143
-
-
Hassen, G.W.1
Tian, D.2
Ding, D.3
Bergold, P.J.4
-
277
-
-
0030832874
-
Ischemic brain injury is mediated by the activation of poly(ADP-ribose)polymerase
-
Endres M., Wang Z.Q., Namura S., Waeber C., Moskowitz M.A. Ischemic brain injury is mediated by the activation of poly(ADP-ribose)polymerase. J. Cereb. Blood Flow Metab. 1997, 17:1143-1151.
-
(1997)
J. Cereb. Blood Flow Metab.
, vol.17
, pp. 1143-1151
-
-
Endres, M.1
Wang, Z.Q.2
Namura, S.3
Waeber, C.4
Moskowitz, M.A.5
-
278
-
-
52449091282
-
Cellular NAD replenishment confers marked neuroprotection against ischemic cell death: role of enhanced DNA repair
-
Wang S., Xing Z., Vosler P.S., Yin H., Li W., Zhang F., Signore A.P., Stetler R.A., Gao Y., Chen J. Cellular NAD replenishment confers marked neuroprotection against ischemic cell death: role of enhanced DNA repair. Stroke 2008, 39:2587-2595.
-
(2008)
Stroke
, vol.39
, pp. 2587-2595
-
-
Wang, S.1
Xing, Z.2
Vosler, P.S.3
Yin, H.4
Li, W.5
Zhang, F.6
Signore, A.P.7
Stetler, R.A.8
Gao, Y.9
Chen, J.10
-
279
-
-
34248375793
-
Intranasal administration with NAD+ profoundly decreases brain injury in a rat model of transient focal ischemia
-
Ying W., Wei G., Wang D., Wang Q., Tang X., Shi J., Zhang P., Lu H. Intranasal administration with NAD+ profoundly decreases brain injury in a rat model of transient focal ischemia. Front. Biosci. 2007, 12:2728-2734.
-
(2007)
Front. Biosci.
, vol.12
, pp. 2728-2734
-
-
Ying, W.1
Wei, G.2
Wang, D.3
Wang, Q.4
Tang, X.5
Shi, J.6
Zhang, P.7
Lu, H.8
-
280
-
-
84863012215
-
Induction of autophagy contributes to the neuroprotection of nicotinamide phosphoribosyltransferase in cerebral ischemia
-
Wang P., Guan Y.F., Du H., Zhai Q.W., Su D.F., Miao C.Y. Induction of autophagy contributes to the neuroprotection of nicotinamide phosphoribosyltransferase in cerebral ischemia. Autophagy 2012, 8:77-87.
-
(2012)
Autophagy
, vol.8
, pp. 77-87
-
-
Wang, P.1
Guan, Y.F.2
Du, H.3
Zhai, Q.W.4
Su, D.F.5
Miao, C.Y.6
-
281
-
-
84871459146
-
Acute resveratrol treatment modulates multiple signaling pathways in the ischemic brain
-
Shin J.A., Lee K.E., Kim H.S., Park E.M. Acute resveratrol treatment modulates multiple signaling pathways in the ischemic brain. Neurochem. Res. 2012, 37:2686-2696.
-
(2012)
Neurochem. Res.
, vol.37
, pp. 2686-2696
-
-
Shin, J.A.1
Lee, K.E.2
Kim, H.S.3
Park, E.M.4
-
282
-
-
84878554741
-
Involvement of arterial baroreflex in the protective effect of dietary restriction against stroke
-
Liu A.J., Guo J.M., Liu W., Su F.Y., Zhai Q.W., Mehta J.L., Wang W.Z., Su D.F. Involvement of arterial baroreflex in the protective effect of dietary restriction against stroke. J. Cereb. Blood Flow Metab. 2013, 33:906-913.
-
(2013)
J. Cereb. Blood Flow Metab.
, vol.33
, pp. 906-913
-
-
Liu, A.J.1
Guo, J.M.2
Liu, W.3
Su, F.Y.4
Zhai, Q.W.5
Mehta, J.L.6
Wang, W.Z.7
Su, D.F.8
-
283
-
-
84880790329
-
Silent information regulator 1 protects the brain against cerebral ischemic damage
-
Hernandez-Jimenez M., Hurtado O., Cuartero M.I., Ballesteros I., Moraga A., Pradillo J.M., McBurney M.W., Lizasoain I., Moro M.A. Silent information regulator 1 protects the brain against cerebral ischemic damage. Stroke 2013, 44:2333-2337.
-
(2013)
Stroke
, vol.44
, pp. 2333-2337
-
-
Hernandez-Jimenez, M.1
Hurtado, O.2
Cuartero, M.I.3
Ballesteros, I.4
Moraga, A.5
Pradillo, J.M.6
McBurney, M.W.7
Lizasoain, I.8
Moro, M.A.9
-
284
-
-
84922480609
-
Silent information regulator 2 homolog 1 counters cerebral hypoperfusion injury by deacetylating endothelial nitric oxide synthase
-
Hattori Y., Okamoto Y., Maki T., Yamamoto Y., Oishi N., Yamahara K., Nagatsuka K., Takahashi R., Kalaria R.N., Fukuyama H., Kinoshita M., Ihara M. Silent information regulator 2 homolog 1 counters cerebral hypoperfusion injury by deacetylating endothelial nitric oxide synthase. Stroke 2014, 45:3403-3411.
-
(2014)
Stroke
, vol.45
, pp. 3403-3411
-
-
Hattori, Y.1
Okamoto, Y.2
Maki, T.3
Yamamoto, Y.4
Oishi, N.5
Yamahara, K.6
Nagatsuka, K.7
Takahashi, R.8
Kalaria, R.N.9
Fukuyama, H.10
Kinoshita, M.11
Ihara, M.12
-
285
-
-
84925965768
-
SIRT1 attenuates severe ischemic damage by preserving cerebral blood flow
-
Hattori Y., Okamoto Y., Nagatsuka K., Takahashi R., Kalaria R.N., Kinoshita M., Ihara M. SIRT1 attenuates severe ischemic damage by preserving cerebral blood flow. Neuroreport 2015, 26:113-117.
-
(2015)
Neuroreport
, vol.26
, pp. 113-117
-
-
Hattori, Y.1
Okamoto, Y.2
Nagatsuka, K.3
Takahashi, R.4
Kalaria, R.N.5
Kinoshita, M.6
Ihara, M.7
-
286
-
-
84865318675
-
Interactions between SIRT1 and MAPK/ERK regulate neuronal apoptosis induced by traumatic brain injury in vitro and in vivo
-
Zhao Y., Luo P., Guo Q., Li S., Zhang L., Zhao M., Xu H., Yang Y., Poon W., Fei Z. Interactions between SIRT1 and MAPK/ERK regulate neuronal apoptosis induced by traumatic brain injury in vitro and in vivo. Exp. Neurol. 2012, 237:489-498.
-
(2012)
Exp. Neurol.
, vol.237
, pp. 489-498
-
-
Zhao, Y.1
Luo, P.2
Guo, Q.3
Li, S.4
Zhang, L.5
Zhao, M.6
Xu, H.7
Yang, Y.8
Poon, W.9
Fei, Z.10
-
287
-
-
67349106386
-
Protection by tetrahydroxystilbene glucoside against cerebral ischemia: involvement of JNK, SIRT1, and NF-kappaB pathways and inhibition of intracellular ROS/RNS generation
-
Wang T., Gu J., Wu P.F., Wang F., Xiong Z., Yang Y.J., Wu W.N., Dong L.D., Chen J.G. Protection by tetrahydroxystilbene glucoside against cerebral ischemia: involvement of JNK, SIRT1, and NF-kappaB pathways and inhibition of intracellular ROS/RNS generation. Free Radic. Biol. Med. 2009, 47:229-240.
-
(2009)
Free Radic. Biol. Med.
, vol.47
, pp. 229-240
-
-
Wang, T.1
Gu, J.2
Wu, P.F.3
Wang, F.4
Xiong, Z.5
Yang, Y.J.6
Wu, W.N.7
Dong, L.D.8
Chen, J.G.9
-
288
-
-
77953285783
-
Icariin protects against brain injury by enhancing SIRT1-dependent PGC-1alpha expression in experimental stroke
-
Zhu H.R., Wang Z.Y., Zhu X.L., Wu X.X., Li E.G., Xu Y. Icariin protects against brain injury by enhancing SIRT1-dependent PGC-1alpha expression in experimental stroke. Neuropharmacology 2010, 59:70-76.
-
(2010)
Neuropharmacology
, vol.59
, pp. 70-76
-
-
Zhu, H.R.1
Wang, Z.Y.2
Zhu, X.L.3
Wu, X.X.4
Li, E.G.5
Xu, Y.6
-
289
-
-
84862760344
-
Epigallocatechin-3-gallate suppresses 1-methyl-4-phenyl-pyridine-induced oxidative stress in PC12 cells via the SIRT1/PGC-1alpha signaling pathway
-
Ye Q., Ye L., Xu X., Huang B., Zhang X., Zhu Y., Chen X. Epigallocatechin-3-gallate suppresses 1-methyl-4-phenyl-pyridine-induced oxidative stress in PC12 cells via the SIRT1/PGC-1alpha signaling pathway. BMC Complement. Altern. Med. 2012, 12:82.
-
(2012)
BMC Complement. Altern. Med.
, vol.12
, pp. 82
-
-
Ye, Q.1
Ye, L.2
Xu, X.3
Huang, B.4
Zhang, X.5
Zhu, Y.6
Chen, X.7
-
290
-
-
77749304750
-
Vitamin E protects against oxidative damage and learning disability after mild traumatic brain injury in rats
-
Aiguo W., Zhe Y., Gomez-Pinilla F. Vitamin E protects against oxidative damage and learning disability after mild traumatic brain injury in rats. Neurorehabil. Neural Repair 2010, 24:290-298.
-
(2010)
Neurorehabil. Neural Repair
, vol.24
, pp. 290-298
-
-
Aiguo, W.1
Zhe, Y.2
Gomez-Pinilla, F.3
-
291
-
-
77951734511
-
Leptin reduces infarct size in association with enhanced expression of CB2, TRPV1, SIRT-1 and leptin receptor
-
Avraham Y., Davidi N., Porat M., Chernoguz D., Magen I., Vorobeiv L., Berry E.M., Leker R.R. Leptin reduces infarct size in association with enhanced expression of CB2, TRPV1, SIRT-1 and leptin receptor. Curr. Neurovasc. Res. 2010, 7:136-143.
-
(2010)
Curr. Neurovasc. Res.
, vol.7
, pp. 136-143
-
-
Avraham, Y.1
Davidi, N.2
Porat, M.3
Chernoguz, D.4
Magen, I.5
Vorobeiv, L.6
Berry, E.M.7
Leker, R.R.8
-
292
-
-
80051534214
-
Erythropoietin employs cell longevity pathways of SIRT1 to foster endothelial vascular integrity during oxidant stress
-
Hou J., Wang S., Shang Y.C., Chong Z.Z., Maiese K. Erythropoietin employs cell longevity pathways of SIRT1 to foster endothelial vascular integrity during oxidant stress. Curr. Neurovasc. Res. 2011, 8:220-235.
-
(2011)
Curr. Neurovasc. Res.
, vol.8
, pp. 220-235
-
-
Hou, J.1
Wang, S.2
Shang, Y.C.3
Chong, Z.Z.4
Maiese, K.5
-
293
-
-
33744494576
-
Oxidative stress modulates Sir2alpha in rat hippocampus and cerebral cortex
-
Wu A., Ying Z., Gomez-Pinilla F. Oxidative stress modulates Sir2alpha in rat hippocampus and cerebral cortex. Eur. J. Neurosci. 2006, 23:2573-2580.
-
(2006)
Eur. J. Neurosci.
, vol.23
, pp. 2573-2580
-
-
Wu, A.1
Ying, Z.2
Gomez-Pinilla, F.3
-
294
-
-
35648952140
-
Omega-3 fatty acids supplementation restores mechanisms that maintain brain homeostasis in traumatic brain injury
-
Wu A., Ying Z., Gomez-Pinilla F. Omega-3 fatty acids supplementation restores mechanisms that maintain brain homeostasis in traumatic brain injury. J. Neurotrauma 2007, 24:1587-1595.
-
(2007)
J. Neurotrauma
, vol.24
, pp. 1587-1595
-
-
Wu, A.1
Ying, Z.2
Gomez-Pinilla, F.3
-
295
-
-
36849077218
-
Food restriction attenuates ischemia-induced spatial learning and memory deficits despite extensive CA1 ischemic injury
-
Roberge M.C., Hotte-Bernard J., Messier C., Plamondon H. Food restriction attenuates ischemia-induced spatial learning and memory deficits despite extensive CA1 ischemic injury. Behav. Brain Res. 2008, 187:123-132.
-
(2008)
Behav. Brain Res.
, vol.187
, pp. 123-132
-
-
Roberge, M.C.1
Hotte-Bernard, J.2
Messier, C.3
Plamondon, H.4
-
296
-
-
28844474597
-
SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling
-
Chen J., Zhou Y., Mueller-Steiner S., Chen L.F., Kwon H., Yi S., Mucke L., Gan L. SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling. J. Biol. Chem. 2005, 280:40364-40374.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 40364-40374
-
-
Chen, J.1
Zhou, Y.2
Mueller-Steiner, S.3
Chen, L.F.4
Kwon, H.5
Yi, S.6
Mucke, L.7
Gan, L.8
-
297
-
-
77957001697
-
Acetylation of tau inhibits its degradation and contributes to tauopathy
-
Min S.W., Cho S.H., Zhou Y., Schroeder S., Haroutunian V., Seeley W.W., Huang E.J., Shen Y., Masliah E., Mukherjee C., Meyers D., Cole P.A., Ott M., Gan L. Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron 2010, 67:953-966.
-
(2010)
Neuron
, vol.67
, pp. 953-966
-
-
Min, S.W.1
Cho, S.H.2
Zhou, Y.3
Schroeder, S.4
Haroutunian, V.5
Seeley, W.W.6
Huang, E.J.7
Shen, Y.8
Masliah, E.9
Mukherjee, C.10
Meyers, D.11
Cole, P.A.12
Ott, M.13
Gan, L.14
-
298
-
-
45849121349
-
Modulation of SIRT1 expression in different neurodegenerative models and human pathologies
-
Pallas M., Pizarro J.G., Gutierrez-Cuesta J., Crespo-Biel N., Alvira D., Tajes M., Yeste-Velasco M., Folch J., Canudas A.M., Sureda F.X., Ferrer I., Camins A. Modulation of SIRT1 expression in different neurodegenerative models and human pathologies. Neuroscience 2008, 154:1388-1397.
-
(2008)
Neuroscience
, vol.154
, pp. 1388-1397
-
-
Pallas, M.1
Pizarro, J.G.2
Gutierrez-Cuesta, J.3
Crespo-Biel, N.4
Alvira, D.5
Tajes, M.6
Yeste-Velasco, M.7
Folch, J.8
Canudas, A.M.9
Sureda, F.X.10
Ferrer, I.11
Camins, A.12
-
299
-
-
77955660387
-
Resveratrol protects against peripheral deficits in a mouse model of Huntington's disease
-
Ho D.J., Calingasan N.Y., Wille E., Dumont M., Beal M.F. Resveratrol protects against peripheral deficits in a mouse model of Huntington's disease. Exp. Neurol. 2010, 225:74-84.
-
(2010)
Exp. Neurol.
, vol.225
, pp. 74-84
-
-
Ho, D.J.1
Calingasan, N.Y.2
Wille, E.3
Dumont, M.4
Beal, M.F.5
-
300
-
-
34447308268
-
SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis
-
Kim D., Nguyen M.D., Dobbin M.M., Fischer A., Sananbenesi F., Rodgers J.T., Delalle I., Baur J.A., Sui G., Armour S.M., Puigserver P., Sinclair D.A., Tsai L.H. SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis. EMBO J. 2007, 26:3169-3179.
-
(2007)
EMBO J.
, vol.26
, pp. 3169-3179
-
-
Kim, D.1
Nguyen, M.D.2
Dobbin, M.M.3
Fischer, A.4
Sananbenesi, F.5
Rodgers, J.T.6
Delalle, I.7
Baur, J.A.8
Sui, G.9
Armour, S.M.10
Puigserver, P.11
Sinclair, D.A.12
Tsai, L.H.13
-
301
-
-
78650482951
-
Oral resveratrol reduces neuronal damage in a model of multiple sclerosis
-
Shindler K.S., Ventura E., Dutt M., Elliott P., Fitzgerald D.C., Rostami A. Oral resveratrol reduces neuronal damage in a model of multiple sclerosis. J. Neuroophthalmol. 2010, 30:328-339.
-
(2010)
J. Neuroophthalmol.
, vol.30
, pp. 328-339
-
-
Shindler, K.S.1
Ventura, E.2
Dutt, M.3
Elliott, P.4
Fitzgerald, D.C.5
Rostami, A.6
-
302
-
-
84859480382
-
SIRT1, a histone deacetylase, regulates prion protein-induced neuronal cell death
-
Seo J.S., Moon M.H., Jeong J.K., Seol J.W., Lee Y.J., Park B.H., Park S.Y. SIRT1, a histone deacetylase, regulates prion protein-induced neuronal cell death. Neurobiol. Aging 2012, 33:1110-1120.
-
(2012)
Neurobiol. Aging
, vol.33
, pp. 1110-1120
-
-
Seo, J.S.1
Moon, M.H.2
Jeong, J.K.3
Seol, J.W.4
Lee, Y.J.5
Park, B.H.6
Park, S.Y.7
-
303
-
-
0035195636
-
Wallerian degeneration of injured axons and synapses is delayed by a Ube4b/Nmnat chimeric gene
-
Mack T.G., Reiner M., Beirowski B., Mi W., Emanuelli M., Wagner D., Thomson D., Gillingwater T., Court F., Conforti L., Fernando F.S., Tarlton A., Andressen C., Addicks K., Magni G., Ribchester R.R., Perry V.H., Coleman M.P. Wallerian degeneration of injured axons and synapses is delayed by a Ube4b/Nmnat chimeric gene. Nat. Neurosci. 2001, 4:1199-1206.
-
(2001)
Nat. Neurosci.
, vol.4
, pp. 1199-1206
-
-
Mack, T.G.1
Reiner, M.2
Beirowski, B.3
Mi, W.4
Emanuelli, M.5
Wagner, D.6
Thomson, D.7
Gillingwater, T.8
Court, F.9
Conforti, L.10
Fernando, F.S.11
Tarlton, A.12
Andressen, C.13
Addicks, K.14
Magni, G.15
Ribchester, R.R.16
Perry, V.H.17
Coleman, M.P.18
-
304
-
-
45549096918
-
SirT1 inhibition reduces IGF-I/IRS-2/Ras/ERK1/2 signaling and protects neurons
-
Li Y., Xu W., McBurney M.W., Longo V.D. SirT1 inhibition reduces IGF-I/IRS-2/Ras/ERK1/2 signaling and protects neurons. Cell Metab. 2008, 8:38-48.
-
(2008)
Cell Metab.
, vol.8
, pp. 38-48
-
-
Li, Y.1
Xu, W.2
McBurney, M.W.3
Longo, V.D.4
-
305
-
-
77951223830
-
Kidney-specific overexpression of Sirt1 protects against acute kidney injury by retaining peroxisome function
-
Hasegawa K., Wakino S., Yoshioka K., Tatematsu S., Hara Y., Minakuchi H., Sueyasu K., Washida N., Tokuyama H., Tzukerman M., Skorecki K., Hayashi K., Itoh H. Kidney-specific overexpression of Sirt1 protects against acute kidney injury by retaining peroxisome function. J. Biol. Chem. 2010, 285:13045-13056.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 13045-13056
-
-
Hasegawa, K.1
Wakino, S.2
Yoshioka, K.3
Tatematsu, S.4
Hara, Y.5
Minakuchi, H.6
Sueyasu, K.7
Washida, N.8
Tokuyama, H.9
Tzukerman, M.10
Skorecki, K.11
Hayashi, K.12
Itoh, H.13
-
306
-
-
77951165669
-
Sirt1 activation protects the mouse renal medulla from oxidative injury
-
He W., Wang Y., Zhang M.Z., You L., Davis L.S., Fan H., Yang H.C., Fogo A.B., Zent R., Harris R.C., Breyer M.D., Hao C.M. Sirt1 activation protects the mouse renal medulla from oxidative injury. J. Clin. Invest. 2010, 120:1056-1068.
-
(2010)
J. Clin. Invest.
, vol.120
, pp. 1056-1068
-
-
He, W.1
Wang, Y.2
Zhang, M.Z.3
You, L.4
Davis, L.S.5
Fan, H.6
Yang, H.C.7
Fogo, A.B.8
Zent, R.9
Harris, R.C.10
Breyer, M.D.11
Hao, C.M.12
-
307
-
-
79961143570
-
SIRT1 activation by resveratrol ameliorates cisplatin-induced renal injury through deacetylation of p53
-
Kim D.H., Jung Y.J., Lee J.E., Lee A.S., Kang K.P., Lee S., Park S.K., Han M.K., Lee S.Y., Ramkumar K.M., Sung M.J., Kim W. SIRT1 activation by resveratrol ameliorates cisplatin-induced renal injury through deacetylation of p53. Am. J. Physiol. Renal Physiol. 2011, 301:F427-F435.
-
(2011)
Am. J. Physiol. Renal Physiol.
, vol.301
, pp. F427-F435
-
-
Kim, D.H.1
Jung, Y.J.2
Lee, J.E.3
Lee, A.S.4
Kang, K.P.5
Lee, S.6
Park, S.K.7
Han, M.K.8
Lee, S.Y.9
Ramkumar, K.M.10
Sung, M.J.11
Kim, W.12
-
308
-
-
84862778684
-
SIRT1 overexpression decreases cisplatin-induced acetylation of NF-kappaB p65 subunit and cytotoxicity in renal proximal tubule cells
-
Jung Y.J., Lee J.E., Lee A.S., Kang K.P., Lee S., Park S.K., Lee S.Y., Han M.K., Kim D.H., Kim W. SIRT1 overexpression decreases cisplatin-induced acetylation of NF-kappaB p65 subunit and cytotoxicity in renal proximal tubule cells. Biochem. Biophys. Res. Commun. 2012, 419:206-210.
-
(2012)
Biochem. Biophys. Res. Commun.
, vol.419
, pp. 206-210
-
-
Jung, Y.J.1
Lee, J.E.2
Lee, A.S.3
Kang, K.P.4
Lee, S.5
Park, S.K.6
Lee, S.Y.7
Han, M.K.8
Kim, D.H.9
Kim, W.10
-
309
-
-
79551601710
-
Resveratrol improves oxidative stress and protects against diabetic nephropathy through normalization of Mn-SOD dysfunction in AMPK/SIRT1-independent pathway
-
Kitada M., Kume S., Imaizumi N., Koya D. Resveratrol improves oxidative stress and protects against diabetic nephropathy through normalization of Mn-SOD dysfunction in AMPK/SIRT1-independent pathway. Diabetes 2011, 60:634-643.
-
(2011)
Diabetes
, vol.60
, pp. 634-643
-
-
Kitada, M.1
Kume, S.2
Imaizumi, N.3
Koya, D.4
-
310
-
-
84871618965
-
Resveratrol prevents renal lipotoxicity and inhibits mesangial cell glucotoxicity in a manner dependent on the AMPK-SIRT1-PGC1alpha axis in db/db mice
-
Kim M.Y., Lim J.H., Youn H.H., Hong Y.A., Yang K.S., Park H.S., Chung S., Ko S.H., Shin S.J., Choi B.S., Kim H.W., Kim Y.S., Lee J.H., Chang Y.S., Park C.W. Resveratrol prevents renal lipotoxicity and inhibits mesangial cell glucotoxicity in a manner dependent on the AMPK-SIRT1-PGC1alpha axis in db/db mice. Diabetologia 2013, 56:204-217.
-
(2013)
Diabetologia
, vol.56
, pp. 204-217
-
-
Kim, M.Y.1
Lim, J.H.2
Youn, H.H.3
Hong, Y.A.4
Yang, K.S.5
Park, H.S.6
Chung, S.7
Ko, S.H.8
Shin, S.J.9
Choi, B.S.10
Kim, H.W.11
Kim, Y.S.12
Lee, J.H.13
Chang, Y.S.14
Park, C.W.15
|