메뉴 건너뛰기




Volumn 54, Issue 2, 2016, Pages 932-943

Classification of Polarimetric SAR Images Based on Modeling Contextual Information and Using Texture Features

Author keywords

Composite kernel; contextual image classification; Markov randomfield (MRF); polarimetric synthetic aperture radar (PolSAR); support vector machine (SVM); texture feature; Wishart distribution

Indexed keywords

FORESTRY; IMAGE CLASSIFICATION; IMAGE TEXTURE; INFORMATION USE; MARKOV PROCESSES; POLARIMETERS; RADAR IMAGING; SUPPORT VECTOR MACHINES; SYNTHETIC APERTURE RADAR;

EID: 84940766717     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2015.2469691     Document Type: Article
Times cited : (95)

References (81)
  • 1
    • 84872787016 scopus 로고    scopus 로고
    • Polarimetric classification of Boreal forest using nonparametric feature selection and multiple classifiers
    • Oct.
    • Y. Maghsoudi, M. Collins, and D. G. Leckie, "Polarimetric classification of Boreal forest using nonparametric feature selection and multiple classifiers," Int. J. Appl. Earth Observ. Geoinf., vol. 19, pp. 139-150, Oct. 2012.
    • (2012) Int. J. Appl. Earth Observ. Geoinf. , vol.19 , pp. 139-150
    • Maghsoudi, Y.1    Collins, M.2    Leckie, D.G.3
  • 2
    • 84880287214 scopus 로고    scopus 로고
    • Radarsat-2 polarimetric SAR data for boreal forest classification using SVM and a wrapper feature selector
    • Jun.
    • Y. Maghsoudi, M. J. Collins, and D. G. Leckie, "Radarsat-2 polarimetric SAR data for boreal forest classification using SVM and a wrapper feature selector," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 6, no. 3, pp. 1531-1538, Jun. 2013.
    • (2013) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.6 , Issue.3 , pp. 1531-1538
    • Maghsoudi, Y.1    Collins, M.J.2    Leckie, D.G.3
  • 3
    • 0031115584 scopus 로고    scopus 로고
    • Decomposition of polarimetric synthetic aperture radar backscatter from upland and flooded forests
    • Y. Wang and F. Davis, "Decomposition of polarimetric synthetic aperture radar backscatter from upland and flooded forests," Int. J. Remote Sens., vol. 18, pp. 1319-1332, 1997.
    • (1997) Int. J. Remote Sens. , vol.18 , pp. 1319-1332
    • Wang, Y.1    Davis, F.2
  • 4
    • 0036613517 scopus 로고    scopus 로고
    • Biophysical forest type characterization in the colombian amazon by airborne polarimetric SAR
    • Jun.
    • D. H. Hoekman and M. J. Quiñones, "Biophysical forest type characterization in the Colombian Amazon by airborne polarimetric SAR," IEEE Trans. Geosci. Remote Sens., vol. 40, no. 6, pp. 1288-1300, Jun. 2002.
    • (2002) IEEE Trans. Geosci. Remote Sens. , vol.40 , Issue.6 , pp. 1288-1300
    • Hoekman, D.H.1    Quiñones, M.J.2
  • 5
    • 0033876572 scopus 로고    scopus 로고
    • Land cover type and biomass classification using air SAR data for evaluation of monitoring scenarios in the colombian amazon
    • Mar.
    • D. H. Hoekman and M. J. Quiriones, "Land cover type and biomass classification using Air SAR data for evaluation of monitoring scenarios in the Colombian Amazon," IEEE Trans. Geosci. Remote Sens., vol. 38, no. 2, pp. 685-696, Mar. 2000.
    • (2000) IEEE Trans. Geosci. Remote Sens. , vol.38 , Issue.2 , pp. 685-696
    • Hoekman, D.H.1    Quiriones, M.J.2
  • 6
    • 80053560576 scopus 로고    scopus 로고
    • Volume scattering modeling in Pol SAR decompositions: Study of ALOS PALSAR data over boreal forest
    • Oct.
    • O. Antropov, Y. Rauste, and T. Hame, "Volume scattering modeling in Pol SAR decompositions: Study of ALOS PALSAR data over boreal forest," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 10, pp. 3838-3848, Oct. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.10 , pp. 3838-3848
    • Antropov, O.1    Rauste, Y.2    Hame, T.3
  • 7
    • 79955581541 scopus 로고    scopus 로고
    • Model-based polarimetric SAR calibration method using forest and surface-scattering targets
    • May
    • M. Shimada, "Model-based polarimetric SAR calibration method using forest and surface-scattering targets," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 5, pp. 1712-1733, May 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.5 , pp. 1712-1733
    • Shimada, M.1
  • 9
    • 0030104487 scopus 로고    scopus 로고
    • A review of target decomposition theorems in radar polarimetry
    • Mar.
    • S. R. Cloude and E. Pottier, "A review of target decomposition theorems in radar polarimetry," IEEE Trans. Geosci. Remote Sens., vol. 34, no. 2, pp. 498-518, Mar. 1996.
    • (1996) IEEE Trans. Geosci. Remote Sens. , vol.34 , Issue.2 , pp. 498-518
    • Cloude, S.R.1    Pottier, E.2
  • 10
    • 0030780622 scopus 로고    scopus 로고
    • An entropy based classification scheme for land applications of polarimetric SAR
    • Jan.
    • S. R. Cloude and E. Pottier, "An entropy based classification scheme for land applications of polarimetric SAR," IEEE Trans. Geosci. Remote Sens., vol. 35, no. 1, pp. 68-78, Jan. 1997.
    • (1997) IEEE Trans. Geosci. Remote Sens. , vol.35 , Issue.1 , pp. 68-78
    • Cloude, S.R.1    Pottier, E.2
  • 11
    • 0033189739 scopus 로고    scopus 로고
    • Unsupervised classification using polarimetric decomposition and the complex Wishart classifier
    • Sep.
    • J.-S. Lee et al., "Unsupervised classification using polarimetric decomposition and the complex Wishart classifier," IEEE Trans. Geosci. Remote Sens., vol. 37, no. 5, pp. 2249-2258, Sep. 1999.
    • (1999) IEEE Trans. Geosci. Remote Sens. , vol.37 , Issue.5 , pp. 2249-2258
    • Lee, J.-S.1
  • 12
    • 0035510570 scopus 로고    scopus 로고
    • Quantitative comparison of classification capability: Fully polarimetric versus dual and single-polarization SAR
    • Nov.
    • J. S. Lee, M. R. Grunes, and E. Pottier, "Quantitative comparison of classification capability: Fully polarimetric versus dual and single-polarization SAR," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 11, pp. 2343-2351, Nov. 2001.
    • (2001) IEEE Trans. Geosci. Remote Sens. , vol.39 , Issue.11 , pp. 2343-2351
    • Lee, J.S.1    Grunes, M.R.2    Pottier, E.3
  • 13
    • 70549111594 scopus 로고    scopus 로고
    • Support vector machine for multifrequency SAR polarimetric data classification
    • Dec.
    • C. Lardeux et al., "Support vector machine for multifrequency SAR polarimetric data classification," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 12, pp. 4143-4152, Dec. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.12 , pp. 4143-4152
    • Lardeux, C.1
  • 14
    • 77957005457 scopus 로고    scopus 로고
    • Polarimetric SAR data in land cover mapping in boreal zone
    • Oct.
    • A. Lonnqvist, Y. Rauste, M. Molinier, and T. Hame, "Polarimetric SAR data in land cover mapping in boreal zone," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 10, pp. 3652-3662, Oct. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.10 , pp. 3652-3662
    • Lonnqvist, A.1    Rauste, Y.2    Molinier, M.3    Hame, T.4
  • 15
    • 70549104881 scopus 로고    scopus 로고
    • The contribution of ALOS PALSARmultipolarization and polarimetric data to crop classification
    • Dec.
    • H. McNairn, J. Shang, X. Jiao, and C. Champagne, "The contribution of ALOS PALSARmultipolarization and polarimetric data to crop classification," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 12, pp. 3981-3992, Dec. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.12 , pp. 3981-3992
    • McNairn, H.1    Shang, J.2    Jiao, X.3    Champagne, C.4
  • 16
    • 82655178425 scopus 로고    scopus 로고
    • A novel algorithm for land use and land cover classification using RADARSAT-2 polarimetric SAR data
    • Mar.
    • Z. Qi, A. G.-O. Yeh, X. Li, and Z. Lin, "A novel algorithm for land use and land cover classification using RADARSAT-2 polarimetric SAR data," Remote Sens. Environ., vol. 118, pp. 21-39, Mar. 2012.
    • (2012) Remote Sens. Environ. , vol.118 , pp. 21-39
    • Qi, Z.1    Yeh, A.G.-O.2    Li, X.3    Lin, Z.4
  • 17
    • 84869504062 scopus 로고    scopus 로고
    • Supervised graph embedding for polarimetric SAR image classification
    • Mar.
    • L. Shi, L. Zhang, J. Yang, L. Zhang, and P. Li, "Supervised graph embedding for polarimetric SAR image classification," IEEE Geosci. Remote Sens. Lett., vol. 10, no. 2, pp. 216-220, Mar. 2013.
    • (2013) IEEE Geosci. Remote Sens. Lett. , vol.10 , Issue.2 , pp. 216-220
    • Shi, L.1    Zhang, L.2    Yang, J.3    Zhang, L.4    Li, P.5
  • 18
    • 84872956983 scopus 로고    scopus 로고
    • Superpixel-based classification with an adaptive number of classes for polarimetric SAR images
    • Feb.
    • B. Liu et al., "Superpixel-based classification with an adaptive number of classes for polarimetric SAR images," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 2, pp. 907-924, Feb. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.2 , pp. 907-924
    • Liu, B.1
  • 19
    • 84880311144 scopus 로고    scopus 로고
    • Classification of segments in Pol SAR imagery by minimum stochastic distances between Wishart distributions
    • Jun.
    • W. B. Silva, C. C. Freitas, S. J. S. Sant'Anna, and A. C. Frery, "Classification of segments in Pol SAR imagery by minimum stochastic distances between Wishart distributions," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 6, no. 3, pp. 1263-1273, Jun. 2013.
    • (2013) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.6 , Issue.3 , pp. 1263-1273
    • Silva, W.B.1    Freitas, C.C.2    Sant'Anna, S.J.S.3    Frery, A.C.4
  • 20
    • 84872703260 scopus 로고    scopus 로고
    • Classification of forest composition using polarimetric decomposition in multiple landscapes
    • Apr.
    • C. Dickinson, P. Siqueira, D. Clewley, and R. Lucas, "Classification of forest composition using polarimetric decomposition in multiple landscapes," Remote Sens. Environ., vol. 131, pp. 206-214, Apr. 2013.
    • (2013) Remote Sens. Environ. , vol.131 , pp. 206-214
    • Dickinson, C.1    Siqueira, P.2    Clewley, D.3    Lucas, R.4
  • 21
    • 84897115190 scopus 로고    scopus 로고
    • Nonlinear compressed sensing-based LDA topic model for polarimetric SAR image classification
    • Mar.
    • C. He, T. Zhuo, D. Ou, M. Liu, and M. Liao, "Nonlinear compressed sensing-based LDA topic model for polarimetric SAR image classification," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 3, pp. 972-982, Mar. 2014.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.7 , Issue.3 , pp. 972-982
    • He, C.1    Zhuo, T.2    Ou, D.3    Liu, M.4    Liao, M.5
  • 22
    • 0028562850 scopus 로고
    • Classification of multi-look polarimetric SAR imagery based on complex Wishart distribution
    • May
    • J. S. Lee, M. R. Grunes, and R. Kwok, "Classification of multi-look polarimetric SAR imagery based on complex Wishart distribution," Int. J. Remote Sens., vol. 15, no. 11, pp. 2299-2311, May 1994.
    • (1994) Int. J. Remote Sens. , vol.15 , Issue.11 , pp. 2299-2311
    • Lee, J.S.1    Grunes, M.R.2    Kwok, R.3
  • 23
    • 0028740898 scopus 로고
    • K-distribution for multilook processed polarimetric SAR imagery
    • J. Lee, D. Schuler, R. Lang, and K. Ranson, "K-distribution for multilook processed polarimetric SAR imagery," in Proc. IGARSS, 1994, pp. 2179-2181.
    • (1994) Proc. IGARSS , pp. 2179-2181
    • Lee, J.1    Schuler, D.2    Lang, R.3    Ranson, K.4
  • 24
    • 84896401187 scopus 로고    scopus 로고
    • A multitexture model for multilook polarimetric synthetic aperture radar data
    • May
    • T. Eltoft, S. N. Anfinsen, and A. P. Doulgeris, "A multitexture model for multilook polarimetric synthetic aperture radar data," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 5, pp. 2910-2919, May 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.5 , pp. 2910-2919
    • Eltoft, T.1    Anfinsen, S.N.2    Doulgeris, A.P.3
  • 25
    • 0031145651 scopus 로고    scopus 로고
    • Optimal speckle reduction for the product model in multilook polarimetric SAR imagery and the Wishart distribution
    • May
    • A. Lopes and F. Séry, "Optimal speckle reduction for the product model in multilook polarimetric SAR imagery and the Wishart distribution," IEEE Trans. Geosci. Remote Sens., vol. 35, no. 3, pp. 632-647, May 1997.
    • (1997) IEEE Trans. Geosci. Remote Sens. , vol.35 , Issue.3 , pp. 632-647
    • Lopes, A.1    Séry, F.2
  • 26
    • 47849113337 scopus 로고    scopus 로고
    • Fisher distribution for texture modeling of polarimetric SAR data
    • Jul.
    • L. Bombrun and J.-M. Beaulieu, "Fisher distribution for texture modeling of polarimetric SAR data," IEEE Geosci. Remote Sens. Lett., vol. 5, no. 3, pp. 512-516, Jul. 2008.
    • (2008) IEEE Geosci. Remote Sens. Lett. , vol.5 , Issue.3 , pp. 512-516
    • Bombrun, L.1    Beaulieu, J.-M.2
  • 27
    • 12444252163 scopus 로고    scopus 로고
    • The polarimetric G distribution for SAR data analysis
    • Feb.
    • C. C. Freitas, A. C. Frery, and A. H. Correia, "The polarimetric G distribution for SAR data analysis," Environmetrics, vol. 16, no. 1, pp. 13-31, Feb. 2005.
    • (2005) Environmetrics , vol.16 , Issue.1 , pp. 13-31
    • Freitas, C.C.1    Frery, A.C.2    Correia, A.H.3
  • 31
    • 0022918073 scopus 로고
    • Group theory and polarization algebra
    • S. R. Cloude, "Group theory and polarization algebra," Optik, vol. 75, no. 1, pp. 26-36, 1986.
    • (1986) Optik , vol.75 , Issue.1 , pp. 26-36
    • Cloude, S.R.1
  • 32
    • 0025469297 scopus 로고
    • A new decomposition of radar target scattering matrix
    • Aug.
    • E. Krogager, "A new decomposition of radar target scattering matrix," Electron. Lett., vol. 26, no. 18, pp. 1525-1526, Aug. 1990.
    • (1990) Electron. Lett. , vol.26 , Issue.18 , pp. 1525-1526
    • Krogager, E.1
  • 33
    • 0003692412 scopus 로고
    • Ph.D. dissertation, Faculty Elect. Eng., Math. Comput. Sci., Tech. Univ. Delft, Delft, The Netherlands
    • J. R. Huynen, "Phenomenological theory of radar targets," Ph.D. dissertation, Faculty Elect. Eng., Math. Comput. Sci., Tech. Univ. Delft, Delft, The Netherlands, 1970.
    • (1970) Phenomenological Theory of Radar Targets
    • Huynen, J.R.1
  • 34
    • 33747921774 scopus 로고    scopus 로고
    • A three-component scattering model for polarimetric SAR data
    • May
    • A. Freeman and S. L. Durden, "A three-component scattering model for polarimetric SAR data," IEEE Trans. Geosci. Remote Sens., vol. 36, no. 3, pp. 963-973, May 1998.
    • (1998) IEEE Trans. Geosci. Remote Sens. , vol.36 , Issue.3 , pp. 963-973
    • Freeman, A.1    Durden, S.L.2
  • 35
    • 24944434996 scopus 로고    scopus 로고
    • Fourcomponent scattering model for polarimetric SAR image decomposition
    • Aug.
    • Y. Yamaguchi, T. Moriyama, M. Ishido, and H. Yamada, "Fourcomponent scattering model for polarimetric SAR image decomposition," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 8, pp. 1699-1706, Aug. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.8 , pp. 1699-1706
    • Yamaguchi, Y.1    Moriyama, T.2    Ishido, M.3    Yamada, H.4
  • 36
    • 0023844675 scopus 로고
    • On radar polarization mixed target state decomposition techniques
    • W. A. Holm and R. M. Barnes, "On radar polarization mixed target state decomposition techniques," in Proc. IEEE Nat. Radar Conf., 1988, pp. 249-254.
    • (1988) Proc. IEEE Nat. Radar Conf. , pp. 249-254
    • Holm, W.A.1    Barnes, R.M.2
  • 37
    • 70349325634 scopus 로고    scopus 로고
    • Phase of target scattering for wetland characterization using polarimetric C-band SAR
    • Sep.
    • R. Touzi, A. Deschamps, and G. Rother, "Phase of target scattering for wetland characterization using polarimetric C-band SAR," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 9, pp. 3241-3261, Sep. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.9 , pp. 3241-3261
    • Touzi, R.1    Deschamps, A.2    Rother, G.3
  • 38
    • 84863517929 scopus 로고    scopus 로고
    • Markov random field models for non-quadratic regularization of complex SAR images
    • Jun.
    • D. Gleich, "Markov random field models for non-quadratic regularization of complex SAR images," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 3, pp. 952-961, Jun. 2012.
    • (2012) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.5 , Issue.3 , pp. 952-961
    • Gleich, D.1
  • 39
    • 77958017904 scopus 로고    scopus 로고
    • SVMand MRF-based method for accurate classification of hyperspectral images
    • Oct.
    • Y. Tarabalka, M. Fauvel, J. Chanussot, and J. A. Benediktsson, "SVMand MRF-based method for accurate classification of hyperspectral images," IEEE Geosci. Remote Sens. Lett., vol. 7, no. 4, pp. 736-740, Oct. 2010.
    • (2010) IEEE Geosci. Remote Sens. Lett. , vol.7 , Issue.4 , pp. 736-740
    • Tarabalka, Y.1    Fauvel, M.2    Chanussot, J.3    Benediktsson, J.A.4
  • 40
    • 55649085304 scopus 로고    scopus 로고
    • Region-based classification of polarimetric SAR images using Wishart MRF
    • Oct.
    • Y. Wu, K. Ji, W. Yu, and Y. Su, "Region-based classification of polarimetric SAR images using Wishart MRF," IEEE Geosci. Remote Sens. Lett., vol. 5, no. 4, pp. 668-672, Oct. 2008.
    • (2008) IEEE Geosci. Remote Sens. Lett. , vol.5 , Issue.4 , pp. 668-672
    • Wu, Y.1    Ji, K.2    Yu, W.3    Su, Y.4
  • 41
    • 0029731006 scopus 로고    scopus 로고
    • Combining spectral and texture data in the segmentation of remotely sensed images
    • S. Ryherd and C. Woodcock, "Combining spectral and texture data in the segmentation of remotely sensed images," Photogramm. Eng. Remote Sens., vol. 62, no. 2, pp. 181-194, 1996.
    • (1996) Photogramm. Eng. Remote Sens. , vol.62 , Issue.2 , pp. 181-194
    • Ryherd, S.1    Woodcock, C.2
  • 42
    • 0028166622 scopus 로고
    • Contextual techniques for classification of high and low resolution remote sensing data
    • B. Kartikeyan, B. Gopalakrishna, M. Kalubarme, and K. Majumder, "Contextual techniques for classification of high and low resolution remote sensing data," Int. J. Remote Sens., vol. 15, no. 5, pp. 1037-1051, 1994.
    • (1994) Int. J. Remote Sens. , vol.15 , Issue.5 , pp. 1037-1051
    • Kartikeyan, B.1    Gopalakrishna, B.2    Kalubarme, M.3    Majumder, K.4
  • 43
    • 80052335044 scopus 로고    scopus 로고
    • Adaptive markov random field approach for classification of hyperspectral imagery
    • Sep.
    • B. Zhang, S. Li, X. Jia, L. Gao, and M. Peng, "Adaptive Markov random field approach for classification of hyperspectral imagery," IEEE Geosci. Remote Sens. Lett., vol. 8, no. 5, pp. 973-977, Sep. 2011.
    • (2011) IEEE Geosci. Remote Sens. Lett. , vol.8 , Issue.5 , pp. 973-977
    • Zhang, B.1    Li, S.2    Jia, X.3    Gao, L.4    Peng, M.5
  • 44
    • 84885019653 scopus 로고    scopus 로고
    • Combining support vector machines and Markov random fields in an integrated framework for contextual image classification
    • May
    • G. Moser and S. B. Serpico, "Combining support vector machines and Markov random fields in an integrated framework for contextual image classification," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 5, pp. 2734-2752, May 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.5 , pp. 2734-2752
    • Moser, G.1    Serpico, S.B.2
  • 45
    • 84891028238 scopus 로고    scopus 로고
    • MAP-MRF approach to landsat ETM+ SLCoff image classification
    • Feb.
    • X. Zhu and D. Liu, "MAP-MRF approach to landsat ETM+ SLCoff image classification," IEEE Trans. Geosci. Remote Sens., vol. 52, pp. 1131-1141, Feb. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , pp. 1131-1141
    • Zhu, X.1    Liu, D.2
  • 46
    • 84992343450 scopus 로고    scopus 로고
    • Region-based classification by combining MS segmentation and MRF for POLSAR images
    • Jun.
    • B. Zhang, G. Ma, Z. Zhang, and Q. Qin, "Region-based classification by combining MS segmentation and MRF for POLSAR images," J. Syst. Eng. Electron., vol. 24, no. 3, pp. 400-409, Jun. 2013.
    • (2013) J. Syst. Eng. Electron. , vol.24 , Issue.3 , pp. 400-409
    • Zhang, B.1    Ma, G.2    Zhang, Z.3    Qin, Q.4
  • 47
    • 85027922419 scopus 로고    scopus 로고
    • Supervised spectral-spatial hyperspectral image classification with weighted Markov random fields
    • Mar.
    • L. Sun et al., "Supervised spectral-spatial hyperspectral image classification with weighted Markov random fields," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 3, pp. 1490-1503, Mar. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.3 , pp. 1490-1503
    • Sun, L.1
  • 48
    • 84888305489 scopus 로고    scopus 로고
    • Hyperspectral image classification using Gaussian mixture models and Markov random fields
    • Jan.
    • W. Li, S. Prasad, and J. E. Fowler, "Hyperspectral image classification using Gaussian mixture models and Markov random fields," IEEE Geosci. Remote Sens. Lett., vol. 11, no. 1, pp. 153-157, Jan. 2014.
    • (2014) IEEE Geosci. Remote Sens. Lett. , vol.11 , Issue.1 , pp. 153-157
    • Li, W.1    Prasad, S.2    Fowler, J.E.3
  • 49
    • 84896399116 scopus 로고    scopus 로고
    • Spatial-attractionbased Markov random field approach for classification of high spatial resolution multispectral imagery
    • Feb.
    • H. Zhang, W. Shi, Y. Wang, M. Hao, and Z. Miao, "Spatial-attractionbased Markov random field approach for classification of high spatial resolution multispectral imagery," IEEE Geosci. Remote Sens. Lett., vol. 11, no. 2, pp. 489-493, Feb. 2014.
    • (2014) IEEE Geosci. Remote Sens. Lett. , vol.11 , Issue.2 , pp. 489-493
    • Zhang, H.1    Shi, W.2    Wang, Y.3    Hao, M.4    Miao, Z.5
  • 52
    • 33646751287 scopus 로고    scopus 로고
    • A context-sensitive technique based on support vector machines for image classification
    • F. Bovolo and L. Bruzzone, "A context-sensitive technique based on support vector machines for image classification," in Proc. PReMI, 2005, pp. 260-265.
    • (2005) Proc. PReMI , pp. 260-265
    • Bovolo, F.1    Bruzzone, L.2
  • 53
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • M. E. Tipping, "Sparse Bayesian learning and the relevance vector machine," J. Mach. Learn. Res., vol. 1, pp. 211-244, 2001.
    • (2001) J. Mach. Learn. Res. , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 54
    • 56849127860 scopus 로고    scopus 로고
    • Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles
    • Nov.
    • M. Fauvel, J. A. Benediktsson, J. Chanussot, and J. R. Sveinsson, "Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 11, pp. 3804-3814, Nov. 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.11 , pp. 3804-3814
    • Fauvel, M.1    Benediktsson, J.A.2    Chanussot, J.3    Sveinsson, J.R.4
  • 55
    • 31144448472 scopus 로고    scopus 로고
    • Composite kernels for hyperspectral image classification
    • Jan.
    • G. Camps-Valls et al., "Composite kernels for hyperspectral image classification," IEEE Geosci. Remote Sens. Lett., vol. 3, no. 1, pp. 93-97, Jan. 2006.
    • (2006) IEEE Geosci. Remote Sens. Lett. , vol.3 , Issue.1 , pp. 93-97
    • Camps-Valls, G.1
  • 56
    • 39049145967 scopus 로고    scopus 로고
    • Semi-supervised graph-based hyperspectral image classification
    • Oct.
    • G. Camps-Valls, T. Bandos Marsheva, and D. Zhou, "Semi-supervised graph-based hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 10, pp. 3044-3054, Oct. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.10 , pp. 3044-3054
    • Camps-Valls, G.1    Bandos Marsheva, T.2    Zhou, D.3
  • 57
    • 44049084715 scopus 로고    scopus 로고
    • Kernel-based framework for multitemporal and multisource remote sensing data classification and change detection
    • Jun.
    • G. Camps-Valls et al., "Kernel-based framework for multitemporal and multisource remote sensing data classification and change detection," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 6, pp. 1822-1835, Jun. 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.6 , pp. 1822-1835
    • Camps-Valls, G.1
  • 59
    • 78650918992 scopus 로고    scopus 로고
    • Spatial information based support vector machine for hyperspectral image classification
    • B.-C. Kuo, C.-S. Huang, C.-C. Hung, Y.-L. Liu, and I.-L. Chen, "Spatial information based support vector machine for hyperspectral image classification," in Proc. IEEE IGARSS, 2010, pp. 832-835.
    • (2010) Proc. IEEE IGARSS , pp. 832-835
    • Kuo, B.-C.1    Huang, C.-S.2    Hung, C.-C.3    Liu, Y.-L.4    Chen, I.-L.5
  • 61
    • 77957993814 scopus 로고    scopus 로고
    • Spatio-spectral remote sensing image classification with graph kernels
    • Oct.
    • G. Camps-Valls, N. Shervashidze, and K. M. Borgwardt, "Spatio-spectral remote sensing image classification with graph kernels," IEEE Geosci. Remote Sens. Lett., vol. 7, no. 4, pp. 741-745, Oct. 2010.
    • (2010) IEEE Geosci. Remote Sens. Lett. , vol.7 , Issue.4 , pp. 741-745
    • Camps-Valls, G.1    Shervashidze, N.2    Borgwardt, K.M.3
  • 62
    • 65049090023 scopus 로고    scopus 로고
    • A composite semisupervised SVM for classification of hyperspectral images
    • Apr.
    • M. Marconcini, G. Camps-Valls, and L. Bruzzone, "A composite semisupervised SVM for classification of hyperspectral images," IEEE Geosci. Remote Sens. Lett., vol. 6, no. 2, pp. 234-238, Apr. 2009.
    • (2009) IEEE Geosci. Remote Sens. Lett. , vol.6 , Issue.2 , pp. 234-238
    • Marconcini, M.1    Camps-Valls, G.2    Bruzzone, L.3
  • 63
    • 80052099081 scopus 로고    scopus 로고
    • A spatial-contextual support vector machine for remotely sensed image classification
    • Mar.
    • C.-H. Li, B.-C. Kuo, C.-T. Lin, and C.-S. Huang, "A spatial-contextual support vector machine for remotely sensed image classification," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 3, pp. 784-799, Mar. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.3 , pp. 784-799
    • Li, C.-H.1    Kuo, B.-C.2    Lin, C.-T.3    Huang, C.-S.4
  • 64
    • 84879991207 scopus 로고    scopus 로고
    • Contextual SVM Using hilbert space embedding for hyperspectral classification
    • Sep.
    • P. Gurram and H. Kwon, "Contextual SVM Using hilbert space embedding for hyperspectral classification," IEEE Trans. Geosci. Remote Sens., vol. 10, no. 5, pp. 1031-1035, Sep. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.10 , Issue.5 , pp. 1031-1035
    • Gurram, P.1    Kwon, H.2
  • 65
    • 84896316919 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral images based on hidden Markov random fields
    • May
    • P. Ghamisi, J. A. Benediktsson, and M. O. Ulfarsson, "Spectral-spatial classification of hyperspectral images based on hidden Markov random fields," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 5, pp. 2565-2574, May 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.5 , pp. 2565-2574
    • Ghamisi, P.1    Benediktsson, J.A.2    Ulfarsson, M.O.3
  • 67
    • 0037209490 scopus 로고    scopus 로고
    • EM procedures using mean field-like approximations for Markov model-based image segmentation
    • Jan.
    • G. Celeux, F. Forbes, and N. Peyrard, "EM procedures using mean field-like approximations for Markov model-based image segmentation," Pattern Recognit., vol. 36, no. 1, pp. 131-144, Jan. 2003.
    • (2003) Pattern Recognit. , vol.36 , Issue.1 , pp. 131-144
    • Celeux, G.1    Forbes, F.2    Peyrard, N.3
  • 68
    • 0029772671 scopus 로고    scopus 로고
    • A Markov random field model for classification of multisource satellite imagery
    • Jan.
    • A. H. Solberg, T. Taxt, and A. K. Jain, "A Markov random field model for classification of multisource satellite imagery," IEEE Trans. Geosci. Remote Sens., vol. 34, no. 1, pp. 100-113, Jan. 1996.
    • (1996) IEEE Trans. Geosci. Remote Sens. , vol.34 , Issue.1 , pp. 100-113
    • Solberg, A.H.1    Taxt, T.2    Jain, A.K.3
  • 70
    • 67650436064 scopus 로고    scopus 로고
    • Recent advances in techniques for hyperspectral image processing
    • Sep.
    • A. Plaza et al., "Recent advances in techniques for hyperspectral image processing," Remote Sens. Environ., vol. 113, no. S1, pp. S110-S122, Sep. 2009.
    • (2009) Remote Sens. Environ. , vol.113 , Issue.S1 , pp. S110-S122
    • Plaza, A.1
  • 71
    • 0024895461 scopus 로고
    • A note on genetic algorithms for largescale feature selection
    • Nov.
    • W. Siedlecki and J. Sklansky, "A note on genetic algorithms for largescale feature selection," Pattern Recognit. Lett., vol. 10, no. 5, pp. 335-347, Nov. 1989.
    • (1989) Pattern Recognit. Lett. , vol.10 , Issue.5 , pp. 335-347
    • Siedlecki, W.1    Sklansky, J.2
  • 72
    • 84880282493 scopus 로고    scopus 로고
    • Locality preserving genetic algorithms for spatial-spectral hyperspectral image classification
    • Jun.
    • M. Cui, S. Prasad, W. Li, and L. Mann Bruce, "Locality preserving genetic algorithms for spatial-spectral hyperspectral image classification," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 6, no. 3, pp. 1688-1697, Jun. 2013.
    • (2013) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.6 , Issue.3 , pp. 1688-1697
    • Cui, M.1    Prasad, S.2    Li, W.3    Mann Bruce, L.4
  • 73
    • 77957990796 scopus 로고    scopus 로고
    • An effective feature selection method for hyperspectral image classification based on genetic algorithm and support vector machine
    • Feb.
    • S. Li, H. Wu, D. Wan, and J. Zhu, "An effective feature selection method for hyperspectral image classification based on genetic algorithm and support vector machine," Knowl.-Based Syst., vol. 24, no. 1, pp. 40-48, Feb. 2011.
    • (2011) Knowl.-Based Syst. , vol.24 , Issue.1 , pp. 40-48
    • Li, S.1    Wu, H.2    Wan, D.3    Zhu, J.4
  • 74
    • 33845678010 scopus 로고    scopus 로고
    • Weight parameter optimization by the Ho-Kashyap algorithm in MRF models for supervised image classification
    • Dec.
    • S. B. Serpico and G. Moser, "Weight parameter optimization by the Ho-Kashyap algorithm in MRF models for supervised image classification," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 12, pp. 3695-3705, Dec. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.12 , pp. 3695-3705
    • Serpico, S.B.1    Moser, G.2
  • 75
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • Mar.
    • C.-W. Hsu and C.-J. Lin, "A comparison of methods for multiclass support vector machines," IEEE Trans. Neural Netw., vol. 13, no. 2, pp. 415-425, Mar. 2002.
    • (2002) IEEE Trans. Neural Netw. , vol.13 , Issue.2 , pp. 415-425
    • Hsu, C.-W.1    Lin, C.-J.2
  • 76
    • 0003545786 scopus 로고
    • Can. Forestry Service, Ottawa, ON, Canada
    • J. Rowe, "Forest regions of Canada," Can. Forestry Service, Ottawa, ON, Canada, 1972.
    • (1972) Forest Regions of Canada
    • Rowe, J.1
  • 78
    • 73349141688 scopus 로고    scopus 로고
    • Automatic mapping of linear woody vegetation features in agricultural landscapes using very high resolution imagery
    • Jan.
    • S. Aksoy, H. G. Akcay, and T. Wassenaar, "Automatic mapping of linear woody vegetation features in agricultural landscapes using very high resolution imagery," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 1, pp. 511-522, Jan. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.1 , pp. 511-522
    • Aksoy, S.1    Akcay, H.G.2    Wassenaar, T.3
  • 79
    • 0029409269 scopus 로고
    • Texture classification and segmentation using wavelet frames
    • Nov.
    • M. Unser, "Texture classification and segmentation using wavelet frames," IEEE Trans. Image Process., vol. 4, no. 11, pp. 1549-1560, Nov. 1995.
    • (1995) IEEE Trans. Image Process. , vol.4 , Issue.11 , pp. 1549-1560
    • Unser, M.1
  • 80
    • 0023823097 scopus 로고
    • The semivariogram in remote sensing: An introduction
    • Apr.
    • P. J. Curran, "The semivariogram in remote sensing: an introduction," Remote Sens. Environ., vol. 24, no. 3, pp. 493-507, Apr. 1988.
    • (1988) Remote Sens. Environ. , vol.24 , Issue.3 , pp. 493-507
    • Curran, P.J.1
  • 81
    • 0023016186 scopus 로고
    • Texture discrimination by Gabor functions
    • Nov.
    • M. R. Turner, "Texture discrimination by Gabor functions," Biol. Cybern., vol. 55, no. 2/3, pp. 71-82, Nov. 1986.
    • (1986) Biol. Cybern. , vol.55 , Issue.2-3 , pp. 71-82
    • Turner, M.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.