메뉴 건너뛰기




Volumn 54, Issue 2, 2016, Pages 805-816

Integrating Hierarchical Segmentation Maps With MRF Prior for Classification of Hyperspectral Images in a Bayesian Framework

Author keywords

Classification; hierarchical segmentation; hyperspectral (HS) image; Markov random field (MRF); multilevel logistic (MLL); statistical region merging (SRM); subspace multinomial logistic regression (MLRsub); support vector machine (SVM)

Indexed keywords

IMAGE CLASSIFICATION; MARKOV PROCESSES; PROBABILITY DISTRIBUTIONS; SPECTROSCOPY; STRUCTURAL FRAMES; SUPPORT VECTOR MACHINES;

EID: 84940757259     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2015.2466657     Document Type: Article
Times cited : (81)

References (41)
  • 1
    • 84899967600 scopus 로고    scopus 로고
    • Advances in spectral-spatial classification of hyperspectral images
    • Mar.
    • M. Fauvel, Y. Tarabalka, J. A. Benediktsson, J. Chanussot, and J. C. Tilton, "Advances in spectral-spatial classification of hyperspectral images," Proc. IEEE, vol. 101, no. 3, pp. 652-675, Mar. 2013.
    • (2013) Proc. IEEE , vol.101 , Issue.3 , pp. 652-675
    • Fauvel, M.1    Tarabalka, Y.2    Benediktsson, J.A.3    Chanussot, J.4    Tilton, J.C.5
  • 2
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • Jan.
    • G. Hughes, "On the mean accuracy of statistical pattern recognizers," IEEE Trans. Inf. Theory, vol. IT-14, no. 1, pp. 55-63, Jan. 1968.
    • (1968) IEEE Trans. Inf. Theory , vol.IT-14 , Issue.1 , pp. 55-63
    • Hughes, G.1
  • 3
    • 18844429782 scopus 로고    scopus 로고
    • On the impact of PCA dimension reduction for hyperspectral detection of difficult targets
    • Apr.
    • M. D. Farrell and R. M. Mersereau, "On the impact of PCA dimension reduction for hyperspectral detection of difficult targets," IEEE Geosci. Remote Sens. Lett., vol. 2, no. 2, pp. 192-195, Apr. 2005.
    • (2005) IEEE Geosci. Remote Sens. Lett. , vol.2 , Issue.2 , pp. 192-195
    • Farrell, M.D.1    Mersereau, R.M.2
  • 4
    • 0033311252 scopus 로고    scopus 로고
    • Interference and noise-adjusted principal components analysis
    • Sep.
    • C.-I. Chang and Q. Du, "Interference and noise-adjusted principal components analysis," IEEE Trans. Geosci. Remote Sens., vol. 37, no. 5, pp. 2387-2396, Sep. 1999.
    • (1999) IEEE Trans. Geosci. Remote Sens. , vol.37 , Issue.5 , pp. 2387-2396
    • Chang, C.-I.1    Du, Q.2
  • 5
    • 85032751123 scopus 로고    scopus 로고
    • Manifold-learningbased feature extraction for classification of hyperspectral data: A review of advances in manifold learning
    • Jan.
    • D. Lunga, S. Prasad, M. M. Crawford, and O. Ersoy, "Manifold-learningbased feature extraction for classification of hyperspectral data: A review of advances in manifold learning," IEEE Signal Process. Mag., vol. 31, no. 1, pp. 55-66, Jan. 2014.
    • (2014) IEEE Signal Process. Mag. , vol.31 , Issue.1 , pp. 55-66
    • Lunga, D.1    Prasad, S.2    Crawford, M.M.3    Ersoy, O.4
  • 6
    • 20444432773 scopus 로고    scopus 로고
    • Kernel-based methods for hyperspectral image classification
    • Jun.
    • G. Camps-Valls and L. Bruzzone, "Kernel-based methods for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 6, pp. 1351-1362, Jun. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.6 , pp. 1351-1362
    • Camps-Valls, G.1    Bruzzone, L.2
  • 7
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Aug.
    • F. Melgani and L. Bruzzone, "Classification of hyperspectral remote sensing images with support vector machines," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8, pp. 1778-1790, Aug. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 8
    • 80052087931 scopus 로고    scopus 로고
    • Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields
    • Mar.
    • J. Li, J. M. Bioucas-Dias, and A. Plaza, "Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 3, pp. 809-823, Mar. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.3 , pp. 809-823
    • Li, J.1    Bioucas-Dias, J.M.2    Plaza, A.3
  • 9
    • 77951295198 scopus 로고    scopus 로고
    • Semisupervised neural networks for efficient hyperspectral image classification
    • May
    • F. Ratle, G. Camps-Valls, and J. Weston, "Semisupervised neural networks for efficient hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 5, pp. 2271-2282, May 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.5 , pp. 2271-2282
    • Ratle, F.1    Camps-Valls, G.2    Weston, J.3
  • 10
    • 67650436064 scopus 로고    scopus 로고
    • Recent advances in techniques for hyperspectral image processing
    • Sep.
    • A. Plaza et al., "Recent advances in techniques for hyperspectral image processing," Remote Sens. Environ., vol. 113, pp. S110-S122, Sep. 2009.
    • (2009) Remote Sens. Environ. , vol.113 , pp. S110-S122
    • Plaza, A.1
  • 11
    • 85032751634 scopus 로고    scopus 로고
    • Advances in hyperspectral image classification: Earth monitoring with statistical learning methods
    • Jan.
    • G. Camps-Valls, D. Tuia, L. Bruzzone, and J. Atli Benediktsson, "Advances in hyperspectral image classification: Earth monitoring with statistical learning methods," IEEE Signal Process. Mag., vol. 31, no. 1, pp. 45-54, Jan. 2014.
    • (2014) IEEE Signal Process. Mag. , vol.31 , Issue.1 , pp. 45-54
    • Camps-Valls, G.1    Tuia, D.2    Bruzzone, L.3    Atli Benediktsson, J.4
  • 12
    • 56849127860 scopus 로고    scopus 로고
    • Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles
    • Nov.
    • M. Fauvel, J. A. Benediktsson, J. Chanussot, and J. R. Sveinsson, "Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 11, pp. 3804-3814, Nov. 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.11 , pp. 3804-3814
    • Fauvel, M.1    Benediktsson, J.A.2    Chanussot, J.3    Sveinsson, J.R.4
  • 13
    • 80052087210 scopus 로고    scopus 로고
    • On combining multiple features for hyperspectral remote sensing image classification
    • Mar.
    • L. Zhang, L. Zhang, D. Tao, and X. Huang, "On combining multiple features for hyperspectral remote sensing image classification," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 3, pp. 879-893, Mar. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.3 , pp. 879-893
    • Zhang, L.1    Zhang, L.2    Tao, D.3    Huang, X.4
  • 14
    • 84923361720 scopus 로고    scopus 로고
    • Improving hyperspectral image classification by combining spectral, texture, and shape features
    • Feb.
    • F. Mirzapour and H. Ghassemian "Improving hyperspectral image classification by combining spectral, texture, and shape features," Int. J. Remote Sens., vol. 36, no. 4, pp. 1070-1096, Feb. 2015.
    • (2015) Int. J. Remote Sens. , vol.36 , Issue.4 , pp. 1070-1096
    • Mirzapour, F.1    Ghassemian, H.2
  • 15
    • 84896314121 scopus 로고    scopus 로고
    • Spectral-spatial hyperspectral image classification with edge-preserving filtering
    • May
    • X. Kang, S. Li, and J. A. Benediktsson, "Spectral-spatial hyperspectral image classification with edge-preserving filtering," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 5, pp. 2666-2677, May 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.5 , pp. 2666-2677
    • Kang, X.1    Li, S.2    Benediktsson, J.A.3
  • 16
    • 77958017904 scopus 로고    scopus 로고
    • SVMand MRF-based method for accurate classification of hyperspectral images
    • Oct.
    • Y. Tarabalka, M. Fauvel, J. Chanussot, and J. A. Benediktsson, "SVMand MRF-based method for accurate classification of hyperspectral images," IEEE Geosci. Remote Sens. Lett., vol. 7, no. 4, pp. 736-740, Oct. 2010.
    • (2010) IEEE Geosci. Remote Sens. Lett. , vol.7 , Issue.4 , pp. 736-740
    • Tarabalka, Y.1    Fauvel, M.2    Chanussot, J.3    Benediktsson, J.A.4
  • 17
    • 67949115614 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques
    • Aug.
    • Y. Tarabalka, J. A. Benediktsson, and J. Chanussot, "Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 8, pp. 2973-2987, Aug. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.8 , pp. 2973-2987
    • Tarabalka, Y.1    Benediktsson, J.A.2    Chanussot, J.3
  • 18
    • 84859048363 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral data based on a stochastic minimum spanning forest approach
    • Apr.
    • K. Bernard, Y. Tarabalka, J. Angulo, J. Chanussot, and J. A. Benediktsson, "Spectral-spatial classification of hyperspectral data based on a stochastic minimum spanning forest approach," IEEE Trans. Image Process., vol. 21, no. 4, pp. 2008-2021, Apr. 2012.
    • (2012) IEEE Trans. Image Process. , vol.21 , Issue.4 , pp. 2008-2021
    • Bernard, K.1    Tarabalka, Y.2    Angulo, J.3    Chanussot, J.4    Benediktsson, J.A.5
  • 19
    • 77953710563 scopus 로고    scopus 로고
    • Learning conditional random fields for classification of hyperspectral images
    • Jul.
    • P. Zhong and R. Wang, "Learning conditional random fields for classification of hyperspectral images," IEEE Trans. Image Process., vol. 19, no. 7, pp. 1890-1907, Jul. 2010.
    • (2010) IEEE Trans. Image Process. , vol.19 , Issue.7 , pp. 1890-1907
    • Zhong, P.1    Wang, R.2
  • 20
    • 84901857500 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral data using local and global probabilities for mixed pixel characterization
    • Oct.
    • M. Khodadadzadeh et al., "Spectral-spatial classification of hyperspectral data using local and global probabilities for mixed pixel characterization," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 10, pp. 6298-6314, Oct. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.10 , pp. 6298-6314
    • Khodadadzadeh, M.1
  • 21
    • 84860340876 scopus 로고    scopus 로고
    • Evaluation of Bayesian despeckling and texture extraction methods based on Gauss-Markov and auto-binomial Gibbs random fields: Application to Terra SAR-X data
    • May
    • D. Espinoza Molina, D. Gleich, and M. Datcu, "Evaluation of Bayesian despeckling and texture extraction methods based on Gauss-Markov and auto-binomial Gibbs random fields: Application to Terra SAR-X data," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 5, pp. 2001-2025, May 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.5 , pp. 2001-2025
    • Espinoza Molina, D.1    Gleich, D.2    Datcu, M.3
  • 23
    • 84931035556 scopus 로고    scopus 로고
    • Object-based multispectral image segmentation and classification
    • F. Mirzapour and H. Ghassemian, "Object-based multispectral image segmentation and classification," in Proc. 7th IST, 2014, pp. 430-435.
    • (2014) Proc. 7th IST , pp. 430-435
    • Mirzapour, F.1    Ghassemian, H.2
  • 24
    • 77953764526 scopus 로고    scopus 로고
    • Segmentation and classification of hyperspectral images using watershed transformation
    • Jul.
    • Y. Tarabalka, J. Chanussot, and J. A. Benediktsson, "Segmentation and classification of hyperspectral images using watershed transformation," Pattern Recognit., vol. 43, no. 7, pp. 2367-2379, Jul. 2010.
    • (2010) Pattern Recognit , vol.43 , Issue.7 , pp. 2367-2379
    • Tarabalka, Y.1    Chanussot, J.2    Benediktsson, J.A.3
  • 26
    • 84885382627 scopus 로고    scopus 로고
    • Markov random field modeling, inference & learning in computer vision & image understanding: A survey
    • Nov.
    • C. Wang, N. Komodakis, and N. Paragios, "Markov random field modeling, inference & learning in computer vision & image understanding: A survey," Comput. Vis. Image Understand., vol. 117, no. 11, pp. 1610-1627, Nov. 2013.
    • (2013) Comput. Vis. Image Understand. , vol.117 , Issue.11 , pp. 1610-1627
    • Wang, C.1    Komodakis, N.2    Paragios, N.3
  • 27
    • 0035509961 scopus 로고    scopus 로고
    • Fast approximate energy minimization via graph cuts
    • Nov.
    • Y. Boykov, O. Veksler, and R. Zabih, "Fast approximate energy minimization via graph cuts," IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, no. 11, pp. 1222-1239, Nov. 2001.
    • (2001) IEEE Trans. Pattern Anal. Mach. Intell. , vol.23 , Issue.11 , pp. 1222-1239
    • Boykov, Y.1    Veksler, O.2    Zabih, R.3
  • 28
    • 4344598245 scopus 로고    scopus 로고
    • An experimental comparison of mincut/max-flow algorithms for energy minimization in vision
    • Sep.
    • Y. Boykov and V. Kolmogorov, "An experimental comparison of mincut/max-flow algorithms for energy minimization in vision," IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 9, pp. 1124-1137, Sep. 2004.
    • (2004) IEEE Trans. Pattern Anal. Mach. Intell. , vol.26 , Issue.9 , pp. 1124-1137
    • Boykov, Y.1    Kolmogorov, V.2
  • 29
    • 0742286180 scopus 로고    scopus 로고
    • What energy functions can be minimized via graph cuts?
    • Feb.
    • V. Kolmogorov and R. Zabin, "What energy functions can be minimized via graph cuts?" IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 2, pp. 147-159, Feb. 2004.
    • (2004) IEEE Trans. Pattern Anal. Mach. Intell. , vol.26 , Issue.2 , pp. 147-159
    • Kolmogorov, V.1    Zabin, R.2
  • 30
    • 84947648698 scopus 로고    scopus 로고
    • Land-cover mapping by Markov modeling of spatial-contextual information in very-high-resolution remote sensing images
    • Mar.
    • G. Moser, S. B. Serpico, and J. A. Benediktsson, "Land-cover mapping by Markov modeling of spatial-contextual information in very-high-resolution remote sensing images," Proc. IEEE, vol. 101, no. 3, pp. 631-651, Mar. 2013.
    • (2013) Proc. IEEE , vol.101 , Issue.3 , pp. 631-651
    • Moser, G.1    Serpico, S.B.2    Benediktsson, J.A.3
  • 31
    • 23844524154 scopus 로고    scopus 로고
    • A unified framework for map estimation in remote sensing image segmentation
    • Jul.
    • A. A. Farag, R. M. Mohamed, and A. El-Baz, "A unified framework for map estimation in remote sensing image segmentation," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 7, pp. 1617-1634, Jul. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.7 , pp. 1617-1634
    • Farag, A.A.1    Mohamed, R.M.2    El-Baz, A.3
  • 32
    • 84885019653 scopus 로고    scopus 로고
    • Combining support vector machines and Markov random fields in an integrated framework for contextual image classification
    • May
    • G. Moser and S. B. Serpico, "Combining support vector machines and Markov random fields in an integrated framework for contextual image classification," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 5, pp. 2734-2752, May 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.5 , pp. 2734-2752
    • Moser, G.1    Serpico, S.B.2
  • 33
    • 80052335044 scopus 로고    scopus 로고
    • Adaptive markov random field approach for classification of hyperspectral imagery
    • Sep.
    • B. Zhang, S. Li, X. Jia, L. Gao, and M. Peng, "Adaptive Markov random field approach for classification of hyperspectral imagery," IEEE Geosci. Remote Sens. Lett., vol. 8, no. 5, pp. 973-977, Sep. 2011.
    • (2011) IEEE Geosci. Remote Sens. Lett. , vol.8 , Issue.5 , pp. 973-977
    • Zhang, B.1    Li, S.2    Jia, X.3    Gao, L.4    Peng, M.5
  • 34
    • 85027922419 scopus 로고    scopus 로고
    • Supervised spectralspatial hyperspectral image classification with weighted Markov random fields
    • Mar.
    • L. Sun, Z. Wu, J. Liu, L. Xiao, and Z. Wei, "Supervised spectralspatial hyperspectral image classification with weighted Markov random fields," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 3, pp. 1490-1503, Mar. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.3 , pp. 1490-1503
    • Sun, L.1    Wu, Z.2    Liu, J.3    Xiao, L.4    Wei, Z.5
  • 35
    • 84896399116 scopus 로고    scopus 로고
    • Spatial-attractionbased Markov random field approach for classification of high spatial resolution multispectral imagery
    • Feb.
    • H. Zhang, W. Shi, Y. Wang, M. Hao, and Z. Miao, "Spatial-attractionbased Markov random field approach for classification of high spatial resolution multispectral imagery," IEEE Geosci. Remote Sens. Lett., vol. 11, no. 2, pp. 489-493, Feb. 2014.
    • (2014) IEEE Geosci. Remote Sens. Lett. , vol.11 , Issue.2 , pp. 489-493
    • Zhang, H.1    Shi, W.2    Wang, Y.3    Hao, M.4    Miao, Z.5
  • 36
    • 84896316919 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral images based on hidden Markov random fields
    • May
    • P. Ghamisi, J. A. Benediktsson, and M. O. Ulfarsson, "Spectral-spatial classification of hyperspectral images based on hidden Markov random fields," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 5, pp. 2565-2574, May 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.5 , pp. 2565-2574
    • Ghamisi, P.1    Benediktsson, J.A.2    Ulfarsson, M.O.3
  • 38
    • 0000672724 scopus 로고    scopus 로고
    • Concentration
    • Berlin, Germany: Springer-Verlag, ser. Algorithms and Combinatorics
    • C. McDiarmid, "Concentration," in Probabilistic Methods for Algorithmic Discrete Mathematics, vol. 16. Berlin, Germany: Springer-Verlag, 1998, pp. 195-248, ser. Algorithms and Combinatorics.
    • (1998) Probabilistic Methods for Algorithmic Discrete Mathematics , vol.16 , pp. 195-248
    • McDiarmid, C.1
  • 39
    • 84873174886 scopus 로고    scopus 로고
    • [Online]
    • Universidad-del-País-Vasco, Hyperspectral Remote Sensing Scenes. [Online]. Available: http://www.ehu.es/ccwintco/index.php?title= Hyperspectral-Remote-Sensing-Scenes
    • Hyperspectral Remote Sensing Scenes
  • 40
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: A library for support vector machines
    • Apr. [Online]
    • C.-C. Chang and C.-J. Lin, "LIBSVM: A library for support vector machines," ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, p. 27, Apr. 2011. [Online]. Available: http://www.csie.ntu.edu.tw/~cjlin/libsvm
    • (2011) ACM Trans. Intell. Syst. Technol. , vol.2 , Issue.3 , pp. 27
    • Chang, C.-C.1    Lin, C.-J.2
  • 41
    • 3042661357 scopus 로고    scopus 로고
    • Thematic map comparison
    • May
    • G. M. Foody, "Thematic map comparison," Photogramm. Eng. Remote Sens., vol. 70, no. 5, pp. 627-633, May 2004.
    • (2004) Photogramm. Eng. Remote Sens. , vol.70 , Issue.5 , pp. 627-633
    • Foody, G.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.