메뉴 건너뛰기




Volumn 27, Issue , 2015, Pages 11-23

A hybrid data mining model of feature selection algorithms and ensemble learning classifiers for credit scoring

Author keywords

Classification; Credit scoring; Data mining; Ensemble learning; Feature selection

Indexed keywords

ALGORITHM; ARTIFICIAL NEURAL NETWORK; BANKING; CLASSIFICATION; DATA MINING; ENSEMBLE FORECASTING; LEARNING;

EID: 84940488270     PISSN: 09696989     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jretconser.2015.07.003     Document Type: Article
Times cited : (144)

References (39)
  • 1
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Mach. Learn. 1996, 24(2):123-140.
    • (1996) Mach. Learn. , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 2
    • 80255133264 scopus 로고    scopus 로고
    • An experimental comparison of classification algorithms for imbalanced credit scoring data sets
    • Brown I., Mues Ch. An experimental comparison of classification algorithms for imbalanced credit scoring data sets. Expert Syst. Appl. 2012, 39(3):3446-3453.
    • (2012) Expert Syst. Appl. , vol.39 , Issue.3 , pp. 3446-3453
    • Brown, I.1    Mues, C.2
  • 3
    • 77950189091 scopus 로고    scopus 로고
    • Combination of feature selection approaches with SVM in credit scoring
    • Chen F.L., Li F.Ch. Combination of feature selection approaches with SVM in credit scoring. Expert Syst. Appl. 2010, 37:4902-4909.
    • (2010) Expert Syst. Appl. , vol.37 , pp. 4902-4909
    • Chen, F.L.1    Li, F.2
  • 4
    • 84155195224 scopus 로고    scopus 로고
    • Classifying credit ratings for Asian banks using integrating feature selection and the CPDA-based rough sets approach
    • Chen Y.Sh Classifying credit ratings for Asian banks using integrating feature selection and the CPDA-based rough sets approach. Knowl.-Based Syst. 2012, 26:259-270.
    • (2012) Knowl.-Based Syst. , vol.26 , pp. 259-270
    • Chen, Y.S.1
  • 5
    • 84919935619 scopus 로고    scopus 로고
    • Selection of support vector machines based classifiers for credit risk domain
    • Danenas P., Garsva G. Selection of support vector machines based classifiers for credit risk domain. Expert Syst. Appl. 2015, 42:3194-3204.
    • (2015) Expert Syst. Appl. , vol.42 , pp. 3194-3204
    • Danenas, P.1    Garsva, G.2
  • 6
    • 0002978642 scopus 로고    scopus 로고
    • In: Proceedings of the 13th International Conference on Machine Learning, Bari, Italy
    • Freund, Y., Schapire, R.E., 1996. Experiments with a new boosting algorithm. In: Proceedings of the 13th International Conference on Machine Learning, Bari, Italy, pp. 148-156.
    • (1996) Experiments with a new boosting algorithm , pp. 148-156
    • Freund, Y.1    Schapire, R.E.2
  • 7
    • 35548967562 scopus 로고    scopus 로고
    • Classification tree analysis using TARGET
    • Gray J.B., Fan G. Classification tree analysis using TARGET. Comput. Stat. Data Anal. 2008, 52(3):1362-1372.
    • (2008) Comput. Stat. Data Anal. , vol.52 , Issue.3 , pp. 1362-1372
    • Gray, J.B.1    Fan, G.2
  • 8
    • 84883050191 scopus 로고    scopus 로고
    • Feature selection in corporate credit rating prediction
    • Hajek P., Michalak K. Feature selection in corporate credit rating prediction. Knowl.-Based Syst. 2013, 51:72-84.
    • (2013) Knowl.-Based Syst. , vol.51 , pp. 72-84
    • Hajek, P.1    Michalak, K.2
  • 9
    • 70349580621 scopus 로고    scopus 로고
    • A data driven ensemble classifier for credit scoring analysis
    • Hsieh N.C., Hung L.P. A data driven ensemble classifier for credit scoring analysis. Expert Syst. Appl. 2010, 37(1):534-545.
    • (2010) Expert Syst. Appl. , vol.37 , Issue.1 , pp. 534-545
    • Hsieh, N.C.1    Hung, L.P.2
  • 10
    • 34447124447 scopus 로고    scopus 로고
    • Measuring retail company performance using credit scoring techniques
    • Hu Y.C., Ansell J. Measuring retail company performance using credit scoring techniques. Eur. J. Oper. Res. 2007, 183(3):1595-1606.
    • (2007) Eur. J. Oper. Res. , vol.183 , Issue.3 , pp. 1595-1606
    • Hu, Y.C.1    Ansell, J.2
  • 11
    • 84867875616 scopus 로고    scopus 로고
    • A bayesian latent variable model with classification and regression tree approach for behavior and credit scoring
    • Kao L.J., Chiu C.C., Chiu F.Y. A bayesian latent variable model with classification and regression tree approach for behavior and credit scoring. Knowl.-Based Syst. 2012, 36:245-252.
    • (2012) Knowl.-Based Syst. , vol.36 , pp. 245-252
    • Kao, L.J.1    Chiu, C.C.2    Chiu, F.Y.3
  • 13
    • 84922766449 scopus 로고    scopus 로고
    • The effect of feature selection on financial distress prediction
    • Liang D., Tsai Ch.F., Wu H.T. The effect of feature selection on financial distress prediction. Knowl.-Based Syst. 2015, 73:289-297.
    • (2015) Knowl.-Based Syst. , vol.73 , pp. 289-297
    • Liang, D.1    Tsai, C.F.2    Wu, H.T.3
  • 14
    • 84859423392 scopus 로고    scopus 로고
    • Exploring the behaviour of base classifiers in credit scoring ensembles
    • Marques A.I., Garcia V., Sanchez J.S. Exploring the behaviour of base classifiers in credit scoring ensembles. Expert Syst. Appl. 2012, 39(11):10244-10250.
    • (2012) Expert Syst. Appl. , vol.39 , Issue.11 , pp. 10244-10250
    • Marques, A.I.1    Garcia, V.2    Sanchez, J.S.3
  • 15
    • 48749131225 scopus 로고    scopus 로고
    • A practical approach to credit scoring
    • Min J.H., Lee Y.C. A practical approach to credit scoring. Expert Syst. Appl. 2008, 35(4):1762-1770.
    • (2008) Expert Syst. Appl. , vol.35 , Issue.4 , pp. 1762-1770
    • Min, J.H.1    Lee, Y.C.2
  • 16
    • 56349112745 scopus 로고    scopus 로고
    • An experimental comparison of ensemble of classifiers for bankruptcy prediction and credit scoring
    • Nanni L., Lumini A. An experimental comparison of ensemble of classifiers for bankruptcy prediction and credit scoring. Expert Syst. Appl. 2009, 36(2):3028-3033.
    • (2009) Expert Syst. Appl. , vol.36 , Issue.2 , pp. 3028-3033
    • Nanni, L.1    Lumini, A.2
  • 17
    • 16244405300 scopus 로고    scopus 로고
    • Building credit scoring models using genetic programming
    • Ong C.S., Huang J.J., Tzeng G.H. Building credit scoring models using genetic programming. Expert Syst. Appl. 2005, 29(1):41-47.
    • (2005) Expert Syst. Appl. , vol.29 , Issue.1 , pp. 41-47
    • Ong, C.S.1    Huang, J.J.2    Tzeng, G.H.3
  • 18
    • 84888315345 scopus 로고    scopus 로고
    • Genetic algorithm-based heuristic for feature selection in credit risk assessment
    • Oreski S., Oreski G. Genetic algorithm-based heuristic for feature selection in credit risk assessment. Expert Syst. Appl. 2014, 41:2052-2064.
    • (2014) Expert Syst. Appl. , vol.41 , pp. 2052-2064
    • Oreski, S.1    Oreski, G.2
  • 20
    • 79955599524 scopus 로고    scopus 로고
    • Neighborhood rough set and SVM based hybrid credit scoring classifier
    • Ping Y., Yongheng L. Neighborhood rough set and SVM based hybrid credit scoring classifier. Expert Syst. Appl. 2011, 38(9):11300-11304.
    • (2011) Expert Syst. Appl. , vol.38 , Issue.9 , pp. 11300-11304
    • Ping, Y.1    Yongheng, L.2
  • 21
    • 84940479411 scopus 로고    scopus 로고
    • RapidMiner version 4.1 beta 2, 2001-2007. Available at
    • RapidMiner version 4.1 beta 2, 2001-2007. Available at:. http://www.rapidminer.com.
  • 22
    • 33845300232 scopus 로고    scopus 로고
    • Feature selection algorithms in classification problems:an experimental evaluation
    • Salappa A., Doumpos M., Zopounidis C. Feature selection algorithms in classification problems:an experimental evaluation. Optim. Methods Softw. 2007, 22(1):199-212.
    • (2007) Optim. Methods Softw. , vol.22 , Issue.1 , pp. 199-212
    • Salappa, A.1    Doumpos, M.2    Zopounidis, C.3
  • 23
    • 50849098868 scopus 로고    scopus 로고
    • A note on knowledge discovery using neural networks and its application to credit card screening
    • Setiono R., Baesens B., Mues C. A note on knowledge discovery using neural networks and its application to credit card screening. Eur. J. Oper. Res. 2009, 192(1):326-332.
    • (2009) Eur. J. Oper. Res. , vol.192 , Issue.1 , pp. 326-332
    • Setiono, R.1    Baesens, B.2    Mues, C.3
  • 24
    • 58549120948 scopus 로고    scopus 로고
    • Consumer credit scoring models with limited data
    • Sustersic M., Mramor D., Zupan J. Consumer credit scoring models with limited data. Expert Syst. Appl. 2009, 36(3):4736-4744.
    • (2009) Expert Syst. Appl. , vol.36 , Issue.3 , pp. 4736-4744
    • Sustersic, M.1    Mramor, D.2    Zupan, J.3
  • 25
    • 0001466281 scopus 로고    scopus 로고
    • A survey of credit and behavioural scoring: forecasting financial risk of lending to consumers
    • Thomas L.C. A survey of credit and behavioural scoring: forecasting financial risk of lending to consumers. Int. J. Forecast. 2000, 16(2):149-172.
    • (2000) Int. J. Forecast. , vol.16 , Issue.2 , pp. 149-172
    • Thomas, L.C.1
  • 26
    • 59349101361 scopus 로고    scopus 로고
    • Feature selection in bankruptcy prediction
    • Tsai C.F. Feature selection in bankruptcy prediction. Knowl.-Based Syst. 2009, 22:120-127.
    • (2009) Knowl.-Based Syst. , vol.22 , pp. 120-127
    • Tsai, C.F.1
  • 27
    • 38649113538 scopus 로고    scopus 로고
    • Using neural network ensembles for bankruptcy prediction and credit scoring
    • Tsai C.F., Wu J.W. Using neural network ensembles for bankruptcy prediction and credit scoring. Expert Syst. Appl. 2008, 34(4):2639-2649.
    • (2008) Expert Syst. Appl. , vol.34 , Issue.4 , pp. 2639-2649
    • Tsai, C.F.1    Wu, J.W.2
  • 28
    • 71349085322 scopus 로고    scopus 로고
    • Multiple classifier application to credit risk assessment
    • Twala B. Multiple classifier application to credit risk assessment. Expert Syst. Appl. 2010, 37(4):3326-3336.
    • (2010) Expert Syst. Appl. , vol.37 , Issue.4 , pp. 3326-3336
    • Twala, B.1
  • 29
    • 84858341723 scopus 로고    scopus 로고
    • A case-based reasoning model that uses preference theory functions for credit scoring
    • Vukovic S., Delibasic B., Uzelac A., Suknovic M. A case-based reasoning model that uses preference theory functions for credit scoring. Expert Syst. Appl. 2012, 39(9):8389-8395.
    • (2012) Expert Syst. Appl. , vol.39 , Issue.9 , pp. 8389-8395
    • Vukovic, S.1    Delibasic, B.2    Uzelac, A.3    Suknovic, M.4
  • 30
    • 58349092287 scopus 로고    scopus 로고
    • Evolutionary-based feature selection approaches with new criteria for data mining:A case study of credit approval data
    • Wang C.M., Huang Y.F. Evolutionary-based feature selection approaches with new criteria for data mining:A case study of credit approval data. Expert Syst. Appl. 2009, 36(3):5900-5908.
    • (2009) Expert Syst. Appl. , vol.36 , Issue.3 , pp. 5900-5908
    • Wang, C.M.1    Huang, Y.F.2
  • 31
    • 84855863614 scopus 로고    scopus 로고
    • A hybrid ensemble approach for enterprise credit risk assessment based on support vector machine
    • Wang G., Ma J. A hybrid ensemble approach for enterprise credit risk assessment based on support vector machine. Expert Syst. Appl. 2012, 39:5325-5331.
    • (2012) Expert Syst. Appl. , vol.39 , pp. 5325-5331
    • Wang, G.1    Ma, J.2
  • 32
    • 77956619458 scopus 로고    scopus 로고
    • A comparative assessment of ensemble learning for credit scoring
    • Wang G., Hao J., Ma J., Jiang H. A comparative assessment of ensemble learning for credit scoring. Expert Syst. Appl. 2011, 38(1):223-230.
    • (2011) Expert Syst. Appl. , vol.38 , Issue.1 , pp. 223-230
    • Wang, G.1    Hao, J.2    Ma, J.3    Jiang, H.4
  • 33
    • 84856536378 scopus 로고    scopus 로고
    • Rough set and scatter search metaheuristic based feature selection for credit scoring
    • Wang J., Hedar A.R., Wang S., Ma J. Rough set and scatter search metaheuristic based feature selection for credit scoring. Expert Syst. Appl. 2012, 39(6):6123-6128.
    • (2012) Expert Syst. Appl. , vol.39 , Issue.6 , pp. 6123-6128
    • Wang, J.1    Hedar, A.R.2    Wang, S.3    Ma, J.4
  • 34
    • 43049117533 scopus 로고    scopus 로고
    • Feature-selection ability of the decision-tree algorithm and the impact of feature-selection/extraction on decision-tree results based on hyperspectral data
    • Wang Y.Y., Li J. Feature-selection ability of the decision-tree algorithm and the impact of feature-selection/extraction on decision-tree results based on hyperspectral data. Int. J. Remote Sens. 2008, 22(10):2993-3010.
    • (2008) Int. J. Remote Sens. , vol.22 , Issue.10 , pp. 2993-3010
    • Wang, Y.Y.1    Li, J.2
  • 36
    • 56349130066 scopus 로고    scopus 로고
    • Credit scoring algorithm based on link analysis ranking with support vector machine
    • Xu X., Zhou C., Wang Z. Credit scoring algorithm based on link analysis ranking with support vector machine. Expert Syst. Appl. 2009, 36(2):2625-2632.
    • (2009) Expert Syst. Appl. , vol.36 , Issue.2 , pp. 2625-2632
    • Xu, X.1    Zhou, C.2    Wang, Z.3
  • 37
    • 56349099298 scopus 로고    scopus 로고
    • The comparisons of data mining techniques for the predictive accuracy of probability of default of credit card clients
    • Yeh I.C., Lien C.h The comparisons of data mining techniques for the predictive accuracy of probability of default of credit card clients. Expert Syst. Appl. 2009, 36(2):2473-2480.
    • (2009) Expert Syst. Appl. , vol.36 , Issue.2 , pp. 2473-2480
    • Yeh, I.C.1    Lien, C.H.2
  • 38
    • 56349095375 scopus 로고    scopus 로고
    • An intelligent-agent-based fuzzy group decision making model for financial multicriteria decision support: the case of credit scoring
    • Yu L., Wang S., Lai K.K. An intelligent-agent-based fuzzy group decision making model for financial multicriteria decision support: the case of credit scoring. Eur. J. Oper. Res. 2009, 195(3):942-959.
    • (2009) Eur. J. Oper. Res. , vol.195 , Issue.3 , pp. 942-959
    • Yu, L.1    Wang, S.2    Lai, K.K.3
  • 39
    • 55549146101 scopus 로고    scopus 로고
    • Credit scoring using support vector machines with direct search for parameters selection
    • Zhou L., Lai K.K., Yu L. Credit scoring using support vector machines with direct search for parameters selection. Soft Comput. 2009, 13:149-155.
    • (2009) Soft Comput. , vol.13 , pp. 149-155
    • Zhou, L.1    Lai, K.K.2    Yu, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.