메뉴 건너뛰기




Volumn , Issue 86, 2014, Pages

ECM protein nanofibers and nanostructures engineered using surface-initiated assembly

Author keywords

Bioengineering; Extracellular matrix proteins; Fibronectin; Issue 86; Laminin; Microcontact printing; Nanofabrics; Nanofibers; Poly(N isopropylacrylamide); Surface initiated assembly; Tissue engineering

Indexed keywords


EID: 84940282203     PISSN: 1940087X     EISSN: None     Source Type: Journal    
DOI: 10.3791/51176     Document Type: Article
Times cited : (14)

References (23)
  • 1
    • 0035516140 scopus 로고    scopus 로고
    • Transmembrane crosstalk between the extracellular matrix and the cytoskeleton
    • Geiger, B., Bershadsky, A., Pankov, R., & Yamada, K. M. Transmembrane crosstalk between the extracellular matrix and the cytoskeleton. Nat Rev Mol Cell Biol. 2, 793-805 (2001).
    • (2001) Nat Rev Mol Cell Biol , vol.2 , pp. 793-805
    • Geiger, B.1    Bershadsky, A.2    Pankov, R.3    Yamada, K.M.4
  • 2
    • 33747152561 scopus 로고    scopus 로고
    • Matrix Elasticity Directs Stem Cell Lineage Specification
    • Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. Matrix Elasticity Directs Stem Cell Lineage Specification. Cell. 126, 677-689 (2006).
    • (2006) Cell , vol.126 , pp. 677-689
    • Engler, A.J.1    Sen, S.2    Sweeney, H.L.3    Discher, D.E.4
  • 3
    • 27944497333 scopus 로고    scopus 로고
    • Tissue Cells Feel and Respond to the Stiffness of Their Substrate
    • doi:10.1126/science.1116995
    • Discher, D. E., Janmey, P., & Wang, Y.-l. Tissue Cells Feel and Respond to the Stiffness of Their Substrate. Science. 310, 1139-1143, doi:10.1126/science.1116995 (2005).
    • (2005) Science , vol.310 , pp. 1139-1143
    • Discher, D.E.1    Janmey, P.2    Wang, Y.-L.3
  • 4
    • 38949168818 scopus 로고    scopus 로고
    • Perfusion-decellularized matrix: Using nature's platform to engineer a bioartificial heart
    • doi:10.1038/nm1684nm1684 [pii]
    • Ott, H. C. et al. Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. Nat Med. 14, 213-221, doi:10.1038/nm1684nm1684 [pii] (2008).
    • (2008) Nat Med , vol.14 , pp. 213-221
    • Ott, H.C.1
  • 5
    • 33745685312 scopus 로고    scopus 로고
    • A review on electrospinning design and nanofibre assemblies
    • Teo, W. E., & Ramakrishna, S. A review on electrospinning design and nanofibre assemblies. Nanotechnology. 17, R89 (2006).
    • (2006) Nanotechnology , vol.17
    • Teo, W.E.1    Ramakrishna, S.2
  • 6
    • 0030232761 scopus 로고    scopus 로고
    • Nanometre diameter fibres of polymer, produced by electrospinning
    • Reneker, D. H., & Chun, I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology. 7, 216 (1996).
    • (1996) Nanotechnology , vol.7 , pp. 216
    • Reneker, D.H.1    Chun, I.2
  • 7
    • 0032949079 scopus 로고    scopus 로고
    • Synthetic nano-scale fibrous extracellular matrix
    • doi:10.1002/(sici)1097-4636(199907)46:1<60::aid-jbm7>3.0.co;2-h
    • Ma, P. X., & Zhang, R. Synthetic nano-scale fibrous extracellular matrix. Journal of Biomedical Materials Research. 46, 60-72, doi:10.1002/(sici)1097-4636(199907)46:1<60::aid-jbm7>3.0.co;2-h (1999).
    • (1999) Journal of Biomedical Materials Research , vol.46 , pp. 60-72
    • Ma, P.X.1    Zhang, R.2
  • 8
    • 0037400540 scopus 로고    scopus 로고
    • A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering
    • doi:10.1016/s0142-9612(02)00635-x
    • Yoshimoto, H., Shin, Y. M., Terai, H., & Vacanti, J. P. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials. 24, 2077-2082, doi:10.1016/s0142-9612(02)00635-x (2003).
    • (2003) Biomaterials , vol.24 , pp. 2077-2082
    • Yoshimoto, H.1    Shin, Y.M.2    Terai, H.3    Vacanti, J.P.4
  • 10
    • 0036197050 scopus 로고    scopus 로고
    • Electrospinning of Collagen Nanofibers
    • doi:10.1021/bm015533u
    • Matthews, J. A., Wnek, G. E., Simpson, D. G., & Bowlin, G. L. Electrospinning of Collagen Nanofibers. Biomacromolecules. 3, 232-238, doi:10.1021/bm015533u (2002).
    • (2002) Biomacromolecules , vol.3 , pp. 232-238
    • Matthews, J.A.1    Wnek, G.E.2    Simpson, D.G.3    Bowlin, G.L.4
  • 11
    • 3042677215 scopus 로고    scopus 로고
    • Electrospinning and mechanical characterization of gelatin nanofibers
    • doi:10.1016/j.polymer.2004.04.005
    • Huang, Z.-M., Zhang, Y. Z., Ramakrishna, S., & Lim, C. T. Electrospinning and mechanical characterization of gelatin nanofibers. Polymer. 45, 5361-5368, doi:10.1016/j.polymer.2004.04.005 (2004).
    • (2004) Polymer , vol.45 , pp. 5361-5368
    • Huang, Z.-M.1    Zhang, Y.Z.2    Ramakrishna, S.3    Lim, C.T.4
  • 12
    • 0038278084 scopus 로고    scopus 로고
    • Electrospinning of Nanofiber Fibrinogen Structures
    • doi:10.1021/nl025866c
    • Wnek, G. E., Carr, M. E., Simpson, D. G., & Bowlin, G. L. Electrospinning of Nanofiber Fibrinogen Structures. Nano Letters. 3, 213-216, doi:10.1021/nl025866c (2002).
    • (2002) Nano Letters , vol.3 , pp. 213-216
    • Wnek, G.E.1    Carr, M.E.2    Simpson, D.G.3    Bowlin, G.L.4
  • 13
    • 20444432818 scopus 로고    scopus 로고
    • Electrospun chitosan-based nanofibers and their cellular compatibility
    • doi:10.1016/j.biomaterials.2005.03.027
    • Bhattarai, N., Edmondson, D., Veiseh, O., Matsen, F. A., & Zhang, M. Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials. 26, 6176-6184, doi:10.1016/j.biomaterials.2005.03.027 (2005).
    • (2005) Biomaterials , vol.26 , pp. 6176-6184
    • Bhattarai, N.1    Edmondson, D.2    Veiseh, O.3    Matsen, F.A.4    Zhang, M.5
  • 14
    • 0242442506 scopus 로고    scopus 로고
    • Human bone marrow stromal cell responses on electrospun silk fibroin mats
    • doi:10.1016/S0142-9612(03)00609-4
    • Jin, H.-J., Chen, J., Karageorgiou, V., Altman, G. H., & Kaplan, D. L. Human bone marrow stromal cell responses on electrospun silk fibroin mats. Biomaterials. 25, 1039-1047, doi:10.1016/S0142-9612(03)00609-4 (2004).
    • (2004) Biomaterials , vol.25 , pp. 1039-1047
    • Jin, H.-J.1    Chen, J.2    Karageorgiou, V.3    Altman, G.H.4    Kaplan, D.L.5
  • 15
    • 0042887252 scopus 로고    scopus 로고
    • The ins and outs of fibronectin matrix assembly
    • doi:10.1242/jcs.00670
    • Wierzbicka-Patynowski, I., Schwarzbauer, J.E. The ins and outs of fibronectin matrix assembly. Journal of Cell Science. 116, 3269-3276, doi:10.1242/jcs.00670 (2003).
    • (2003) Journal of Cell Science , vol.116 , pp. 3269-3276
    • Wierzbicka-Patynowski, I.1    Schwarzbauer, J.E.2
  • 16
    • 0021111985 scopus 로고
    • In vitro formation of disulfide-bonded fibronectin multimers
    • Mosher, D. F., & Johnson, R. B. In vitro formation of disulfide-bonded fibronectin multimers. Journal of Biological Chemistry. 258, 6595-6601 (1983).
    • (1983) Journal of Biological Chemistry , vol.258 , pp. 6595-6601
    • Mosher, D.F.1    Johnson, R.B.2
  • 17
    • 45049084735 scopus 로고    scopus 로고
    • Assay to mechanically tune and optically probe fibrillar fibronectin conformations from fully relaxed to breakage
    • doi:10.1016/j.matbio.2008.02.003
    • Little, W. C., Smith, M. L., Ebneter, U., & Vogel, V. Assay to mechanically tune and optically probe fibrillar fibronectin conformations from fully relaxed to breakage. Matrix Biology. 27, 451-461, doi:10.1016/j.matbio.2008.02.003 (2008).
    • (2008) Matrix Biology , vol.27 , pp. 451-461
    • Little, W.C.1    Smith, M.L.2    Ebneter, U.3    Vogel, V.4
  • 18
    • 52149109153 scopus 로고    scopus 로고
    • Force-induced fibronectin fibrillogenesis in vitro
    • Ulmer, J., Geiger, B., & Spatz, J. P. Force-induced fibronectin fibrillogenesis in vitro. Soft Matter. 4, 1998-2007 (2008).
    • (2008) Soft Matter , vol.4 , pp. 1998-2007
    • Ulmer, J.1    Geiger, B.2    Spatz, J.P.3
  • 19
    • 70849127367 scopus 로고    scopus 로고
    • Fibronectin forms the most extensible biological fibers displaying switchable force-exposed cryptic binding sites
    • doi:10.1073/pnas.0907518106
    • Klotzsch, E. et al. Fibronectin forms the most extensible biological fibers displaying switchable force-exposed cryptic binding sites. Proceedings of the National Academy of Sciences U S A. doi:10.1073/pnas.0907518106 (2009).
    • (2009) Proceedings of the National Academy of Sciences U S A
    • Klotzsch, E.1
  • 20
    • 77953304584 scopus 로고    scopus 로고
    • Surface-Initiated Assembly of Protein Nanofabrics
    • Feinberg, A. W., & Parker, K. K. Surface-Initiated Assembly of Protein Nanofabrics. Nano Letters. 10, 2184-2191 (2010).
    • (2010) Nano Letters , vol.10 , pp. 2184-2191
    • Feinberg, A.W.1    Parker, K.K.2
  • 21
    • 84869198549 scopus 로고    scopus 로고
    • Differential Contributions of Conformation Extension and Domain Unfolding to Properties of Fibronectin Nanotextiles
    • doi:10.1021/nl302643g
    • Deravi, L. F. et al. Differential Contributions of Conformation Extension and Domain Unfolding to Properties of Fibronectin Nanotextiles. Nano Letters. 12, 5587-5592, doi:10.1021/nl302643g (2012).
    • (2012) Nano Letters , vol.12 , pp. 5587-5592
    • Deravi, L.F.1
  • 22
    • 80055111956 scopus 로고    scopus 로고
    • Microcontact Printing of Proteins for Cell Biology
    • doi:10.3791/1065
    • Shen, K., Qi, J., & Kam, L. C. Microcontact Printing of Proteins for Cell Biology. J Vis Exp. e1065, doi:10.3791/1065 (2008).
    • (2008) J Vis Exp
    • Shen, K.1    Qi, J.2    Kam, L.C.3
  • 23
    • 33645780908 scopus 로고    scopus 로고
    • Mechanotransduction Involving Multimodular Proteins: Converting Force into Biochemical Signals
    • doi:10.1146/annurev.biophys.35.040405.102013
    • Vogel, V. Mechanotransduction Involving Multimodular Proteins: Converting Force into Biochemical Signals. Annual Review of Biophysics and Biomolecular Structure. 35, 459-488, doi:10.1146/annurev.biophys.35.040405.102013 (2006).
    • (2006) Annual Review of Biophysics and Biomolecular Structure , vol.35 , pp. 459-488
    • Vogel, V.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.