-
1
-
-
38949102073
-
Building better batteries
-
Armand, M. & Tarascon, J.-M. Building better batteries. Nature 451, 652-657 (2008).
-
(2008)
Nature
, vol.451
, pp. 652-657
-
-
Armand, M.1
Tarascon, J.-M.2
-
2
-
-
0029769438
-
A polymer electrolyte-based rechargeable lithium/oxygen battery
-
Abraham, K. M. & Jiang, Z. A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 143, 1-5 (1996).
-
(1996)
J. Electrochem. Soc.
, vol.143
, pp. 1-5
-
-
Abraham, K.M.1
Jiang, Z.2
-
3
-
-
43049097887
-
Theoretical energy density of Li-air batteries
-
Zheng, J. P., Liang, R. Y., Hendrickson, M. & Plichta, E. J. Theoretical energy density of Li-air batteries. J. Electrochem. Soc. 155, A432-A437 (2008).
-
(2008)
J. Electrochem. Soc.
, Issue.155
, pp. A432-A437
-
-
Zheng, J.P.1
Liang, R.Y.2
Hendrickson, M.3
Plichta, E.J.4
-
4
-
-
77953970926
-
Rechargeable Li-air batteries with carbonate-based liquid electrolytes
-
Mizuno, F., Nakanishi, S., Kotani, Y., Yokoishi, S. & Iba, H. Rechargeable Li-air batteries with carbonate-based liquid electrolytes. Electrochemistry (Tokyo, Jpn.) 78, 403-405 (2010).
-
(2010)
Electrochemistry (Tokyo, Jpn.)
, vol.78
, pp. 403-405
-
-
Mizuno, F.1
Nakanishi, S.2
Kotani, Y.3
Yokoishi, S.4
Iba, H.5
-
5
-
-
84870877949
-
Cathode reaction mechanism of non-aqueous Li-O2 batteries with highly oxygen radical stable electrolyte solvent
-
Mizuno, F. et al. Cathode reaction mechanism of non-aqueous Li-O2 batteries with highly oxygen radical stable electrolyte solvent. J. Power Sources 228, 47-56 (2013).
-
(2013)
J. Power Sources
, vol.228
, pp. 47-56
-
-
Mizuno, F.1
-
6
-
-
79957673636
-
Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes
-
Freunberger, S. A. et al. Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes. J. Am. Chem. Soc. 133, 8040-8047 (2011).
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 8040-8047
-
-
Freunberger, S.A.1
-
7
-
-
79957596245
-
Solvents' critical role in nonaqueous lithium-oxygen battery electrochemistry
-
McCloskey, B. D., Bethune, D. S., Shelby, R. M., Girishkumar, G. & Luntz, A. C. Solvents' critical role in nonaqueous lithium-oxygen battery electrochemistry. J. Phys. Chem. Lett. 2, 1161-1166 (2011).
-
(2011)
J. Phys. Chem. Lett.
, vol.2
, pp. 1161-1166
-
-
McCloskey, B.D.1
Bethune, D.S.2
Shelby, R.M.3
Girishkumar, G.4
Luntz, A.C.5
-
8
-
-
84862868521
-
An improved high-performance lithium-air battery
-
Jung, H.-G., Hassoun, J., Park, J.-B., Sun, Y.-K. & Scrosati, B. An improved high-performance lithium-air battery. Nature Chem. 4, 579-585 (2012).
-
(2012)
Nature Chem.
, vol.4
, pp. 579-585
-
-
Jung, H.-G.1
Hassoun, J.2
Park, J.-B.3
Sun, Y.-K.4
Scrosati, B.5
-
9
-
-
84920800557
-
Towards a stable organic electrolyte for the lithium oxygen battery
-
Adams, B. D. et al. Towards a stable organic electrolyte for the lithium oxygen battery. Adv. Energy Mater. 5, 1400867 (2015).
-
(2015)
Adv. Energy Mater.
, vol.5
, pp. 1400867
-
-
Adams, B.D.1
-
10
-
-
0018995534
-
The lithium-iodine cell for medical and commercial applications
-
Schneider, A. A., Harney, D. E. & Harney, M. J. The lithium-iodine cell for medical and commercial applications. J. Power Sources 5, 15-23 (1980).
-
(1980)
J. Power Sources
, vol.5
, pp. 15-23
-
-
Schneider, A.A.1
Harney, D.E.2
Harney, M.J.3
-
11
-
-
0015672153
-
Conduction characteristics of the lithium iodide-aluminum oxide solid electrolytes
-
Liang, C. C. Conduction characteristics of the lithium iodide-aluminum oxide solid electrolytes. J. Electrochem. Soc. 120, 1289-1292 (1973).
-
(1973)
J. Electrochem. Soc.
, vol.120
, pp. 1289-1292
-
-
Liang, C.C.1
-
12
-
-
0034320019
-
Tin-flm lithium and lithium-ion batteries
-
Bates, J. B., Dudney, N. J., Neudecker, B. J., Ueda, A. & Evans, C. D. Tin-flm lithium and lithium-ion batteries. Solid State Ionics 135, 33-45 (2000).
-
(2000)
Solid State Ionics
, vol.135
, pp. 33-45
-
-
Bates, J.B.1
Dudney, N.J.2
Neudecker, B.J.3
Ueda, A.4
Evans, C.D.5
-
13
-
-
0026883898
-
Electrochemical properties and cycling performance of composite electrodes in solid state lithium batteries
-
Julien, C., Saikh, S. & Balkanski, M. Electrochemical properties and cycling performance of composite electrodes in solid state lithium batteries. Mater. Sci. Eng. B14, 121-126 (1992).
-
(1992)
Mater. Sci. Eng. B
, vol.14
, pp. 121-126
-
-
Julien, C.1
Saikh, S.2
Balkanski, M.3
-
14
-
-
38649099073
-
Preparation of lithium ion conducting glasses and glass-ceramics for all-solid-state batteries
-
Tatsumisago, M. & Hayashi, A. Preparation of lithium ion conducting glasses and glass-ceramics for all-solid-state batteries. J. Non-Cryst. Solids 354, 1411-1417 (2008).
-
(2008)
J. Non-Cryst. Solids
, vol.354
, pp. 1411-1417
-
-
Tatsumisago, M.1
Hayashi, A.2
-
15
-
-
67349207720
-
Inorganic solid Li ion conductors: An overview
-
Knauth, P. Inorganic solid Li ion conductors: An overview. Solid State Ionics 180, 911-916 (2009).
-
(2009)
Solid State Ionics
, vol.180
, pp. 911-916
-
-
Knauth, P.1
-
16
-
-
80052054095
-
A lithium superionic conductor
-
Kamaya, N. et al. A lithium superionic conductor. Nature Mater. 10, 682-686 (2011).
-
(2011)
Nature Mater.
, vol.10
, pp. 682-686
-
-
Kamaya, N.1
-
17
-
-
72249117803
-
A solid-state, rechargeable, long cycle life lithium-air battery
-
Kumar, B. et al. A solid-state, rechargeable, long cycle life lithium-air battery. J. Electrochem. Soc. 157, A50-A54 (2010).
-
(2010)
J. Electrochem. Soc.
, vol.157
, pp. A50-A54
-
-
Kumar, B.1
-
18
-
-
84870015427
-
Electrochemical performance and reaction mechanism of all-solid-state lithium-air batteries composed of lithium, Li1+xAlyGe2-y(PO4)3 solid electrolyte and carbon nanotube air electrode
-
Kitaura, H. & Zhou, H. Electrochemical performance and reaction mechanism of all-solid-state lithium-air batteries composed of lithium, Li1+xAlyGe2-y(PO4)3 solid electrolyte and carbon nanotube air electrode. Energy Environ. Sci. 5, 9077-9084 (2012).
-
(2012)
Energy Environ. Sci.
, vol.5
, pp. 9077-9084
-
-
Kitaura, H.1
Zhou, H.2
-
19
-
-
32044453597
-
Rechargeable Li2O2 electrode for lithium batteries
-
Ogasawara, T., Débart, A., Holzapfel, M., Novák, P. & Bruce, P. G. Rechargeable Li2O2 electrode for lithium batteries. J. Am. Chem. Soc. 128, 1390-1393 (2006).
-
(2006)
J. Am. Chem. Soc.
, vol.128
, pp. 1390-1393
-
-
Ogasawara, T.1
Débart, A.2
Holzapfel, M.3
Novák, P.4
Bruce, P.G.5
-
20
-
-
84879107764
-
Infuence of temperature on lithium-oxygen battery behavior
-
Park, J.-B. et al. Infuence of temperature on lithium-oxygen battery behavior. Nano Lett. 13, 2971-2975 (2013).
-
(2013)
Nano Lett.
, vol.13
, pp. 2971-2975
-
-
Park, J.-B.1
-
21
-
-
79551587938
-
Rechargeable lithium/TEGDME-LiPF6/O2 battery
-
Laoire, C. Ó., Mukerjee, S., Plichta, E. J., Hendrickson, M. A. & Abraham, K. M. Rechargeable lithium/TEGDME-LiPF6/O2 battery. J. Electrochem. Soc. 158, A302-A308 (2011).
-
(2011)
J. Electrochem. Soc.
, vol.158
, pp. A302-A308
-
-
Laoire, C.Ó.1
Mukerjee, S.2
Plichta, E.J.3
Hendrickson, M.A.4
Abraham, K.M.5
-
22
-
-
84879759104
-
Toward a lithium-"air" battery: The effect of CO2 on the chemistry of a lithium-oxygen cell
-
Lim, H.-K. et al. Toward a lithium-"air" battery: The effect of CO2 on the chemistry of a lithium-oxygen cell. J. Am. Chem. Soc. 135, 9733-9742 (2013).
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 9733-9742
-
-
Lim, H.-K.1
-
23
-
-
35349008587
-
Fast lithium ion conduction in garnet-type Li7La3Zr2O12 Angew
-
Murugan, R., Tangadurai, V. & Weppner, W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12 Angew. Chem. Int. Ed. 46, 7778 (2007).
-
(2007)
Chem. Int. Ed.
, vol.46
, pp. 7778
-
-
Murugan, R.1
Tangadurai, V.2
Weppner, W.3
-
24
-
-
84863682009
-
First-principles density functional calculation of electrochemical stability of fast Li ion conducting garnet-type oxides
-
Nakayam, M., Kotobuki, M., Munakata, H., Nogami, M. & Kanamura, K. First-principles density functional calculation of electrochemical stability of fast Li ion conducting garnet-type oxides. Phys. Chem. Chem. Phys. 14, 10008 (2012).
-
(2012)
Phys. Chem. Chem. Phys.
, vol.14
, pp. 10008
-
-
Nakayam, M.1
Kotobuki, M.2
Munakata, H.3
Nogami, M.4
Kanamura, K.5
-
25
-
-
84886065449
-
Degradation of NASICON-type materials in contact with lithium metal: Formation of mixed conducting interphases (MCI) on solid electrolytes
-
Hartmann, P. et al. Degradation of NASICON-type materials in contact with lithium metal: Formation of mixed conducting interphases (MCI) on solid electrolytes. J. Phys. Chem. C 117, 21064-21074 (2013).
-
(2013)
J. Phys. Chem. C
, vol.117
, pp. 21064-21074
-
-
Hartmann, P.1
-
26
-
-
77955653588
-
Electrochemical properties of Li symmetric solid-state cell with NASICON-type solid electrolyte and electrodes
-
Kobayashi, E., Plashnitsa, L. S., Doi, T., Okada, S. & Yamaki, J. Electrochemical properties of Li symmetric solid-state cell with NASICON-type solid electrolyte and electrodes. Electrochem. Commun. 12, 894-896 (2010).
-
(2010)
Electrochem. Commun.
, vol.12
, pp. 894-896
-
-
Kobayashi, E.1
Plashnitsa, L.S.2
Doi, T.3
Okada, S.4
Yamaki, J.5
-
27
-
-
84876099478
-
All-solid-state lithium ion battery using garnet-type oxide and Li3BO3 solid electrolytes fabricated by screen-printing
-
Ohta, S. et al. All-solid-state lithium ion battery using garnet-type oxide and Li3BO3 solid electrolytes fabricated by screen-printing. J. Power Sources 238, 53-56 (2013).
-
(2013)
J. Power Sources
, vol.238
, pp. 53-56
-
-
Ohta, S.1
-
28
-
-
84860191490
-
Twin problems of interfacial carbonate formation in nonaqueous Li-O2 batteries
-
McCloskey, B. D. et al. Twin problems of interfacial carbonate formation in nonaqueous Li-O2 batteries. J. Phys. Chem. Lett. 3, 997-1001 (2012).
-
(2012)
J. Phys. Chem. Lett.
, vol.3
, pp. 997-1001
-
-
McCloskey, B.D.1
-
29
-
-
84890235414
-
Size effect of lithium peroxide on charging performance of Li-O2 batteries
-
Hu, Y. et al. Size effect of lithium peroxide on charging performance of Li-O2 batteries. Nanoscale 5, 177 (2014).
-
(2014)
Nanoscale
, vol.5
, pp. 177
-
-
Hu, Y.1
-
30
-
-
84874838225
-
Enhanced power and rechargeability of a Li-O2 battery based on a hierarchical-fbril CNT electrode
-
Lim, H.-D. et al. Enhanced power and rechargeability of a Li-O2 battery based on a hierarchical-fbril CNT electrode. Adv. Mater. 25, 1348-1352 (2013).
-
(2013)
Adv. Mater.
, vol.25
, pp. 1348-1352
-
-
Lim, H.-D.1
-
31
-
-
84880399731
-
Partially cracked carbon nanotubes as cathode materials for lithium-air batteries
-
Li, J., Zhou, G., Zhang, Z., Lai, Y. & Jia, M. Partially cracked carbon nanotubes as cathode materials for lithium-air batteries. ECS Electrochem. Lett. 2, A25-A27 (2013).
-
(2013)
ECS Electrochem. Lett.
, vol.2
, pp. A25-A27
-
-
Li, J.1
Zhou, G.2
Zhang, Z.3
Lai, Y.4
Jia, M.5
-
32
-
-
84867291552
-
Electrochemical performance of solid-state lithium-air batteries using carbon nanotube catalyst in the air electrode
-
Kitaura, H. & Zhou, H. Electrochemical performance of solid-state lithium-air batteries using carbon nanotube catalyst in the air electrode. Adv. Energy Mater. 2, 889-894 (2012).
-
(2012)
Adv. Energy Mater.
, vol.2
, pp. 889-894
-
-
Kitaura, H.1
Zhou, H.2
-
33
-
-
79959871542
-
Oxygen reactions in a non-aqueous Li+ Electrolyte
-
Peng, Z. et al. Oxygen reactions in a non-aqueous Li+ Electrolyte. Angew. Chem. Int. Ed. 50, 6351-6355 (2011).
-
(2011)
Angew. Chem. Int. Ed.
, vol.50
, pp. 6351-6355
-
-
Peng, Z.1
-
34
-
-
84875646967
-
Termal stability of Li2O2 and Li2O for Li-air batteries: In situ XRD and XPS studies
-
Yao, K. P. C. et al. Termal stability of Li2O2 and Li2O for Li-air batteries: In situ XRD and XPS studies. J. Electrochem. Soc. 160, A824-A831 (2013).
-
(2013)
J. Electrochem. Soc.
, vol.160
, pp. A824-A831
-
-
Yao, K.P.C.1
-
35
-
-
84868272693
-
In situ ambient pressure X-ray photoelectron spectroscopy studies of lithium-oxygen redox reactions
-
Lu, Y.-C. et al. In situ ambient pressure X-ray photoelectron spectroscopy studies of lithium-oxygen redox reactions. Sci. Rep. 2, #715 (2012).
-
(2012)
Sci. Rep.
, vol.2
, pp. 715
-
-
Lu, Y.-C.1
|