메뉴 건너뛰기




Volumn 21, Issue 3, 2015, Pages 931-948

Experimental validation of a reinforcement learning based approach for a service-wise optimisation of heterogeneous wireless sensor networks

Author keywords

Linear approximation; Logarithmic state access distribution; Network cooperation; Network service negotiation; Reinforcement learning; Self awareness; greedy

Indexed keywords

CONSTRAINED OPTIMIZATION; MEDIUM ACCESS CONTROL; REINFORCEMENT LEARNING; TELECOMMUNICATION NETWORKS;

EID: 84939897610     PISSN: 10220038     EISSN: 15728196     Source Type: Journal    
DOI: 10.1007/s11276-014-0817-8     Document Type: Article
Times cited : (13)

References (31)
  • 1
    • 83355164123 scopus 로고    scopus 로고
    • van den Akker, D., & Blondia, C. (2011). On the effects of interference between heterogeneous sensor network MAC protocols. In IEEE international conference on mobile ad-hoc and sensor systems (IEEE MASS), pp. 560–569, IEEE Computer Society
    • van den Akker, D., & Blondia, C. (2011). On the effects of interference between heterogeneous sensor network MAC protocols. In IEEE international conference on mobile ad-hoc and sensor systems (IEEE MASS), pp. 560–569, IEEE Computer Society.
  • 3
    • 42449103440 scopus 로고    scopus 로고
    • Symbiotic networks: Towards a new level of cooperation between wireless networks. In Published in special issue of the wireless personal communications journal, Springer
    • De Poorter, E., Latre, B., Moerman, I., & Demeester, P. (2008). Symbiotic networks: Towards a new level of cooperation between wireless networks. In Published in special issue of the wireless personal communications journal, Springer, Netherlands, 45(4), 479–495.
    • (2008) Netherlands , vol.45 , Issue.4 , pp. 479-495
    • De Poorter, E.1    Latre, B.2    Moerman, I.3    Demeester, P.4
  • 4
    • 84859037236 scopus 로고    scopus 로고
    • Lanza-Gutierrez, J. M., Gomez-Pulido, J. A., Vega-Rodriguez, M. A., & Sanchez-Perez, J. M. (2012). Multi-objective evolutionary algorithms for energy-efficiency in heterogeneous wireless sensor networks. In SAS 2012: IEEE Sensors Applications Symposium, Feb 7, 2012–Feb 9, 2012, Brescia, Italy
    • Lanza-Gutierrez, J. M., Gomez-Pulido, J. A., Vega-Rodriguez, M. A., & Sanchez-Perez, J. M. (2012). Multi-objective evolutionary algorithms for energy-efficiency in heterogeneous wireless sensor networks. In SAS 2012: IEEE Sensors Applications Symposium, Feb 7, 2012–Feb 9, 2012, Brescia, Italy.
  • 6
    • 84939930276 scopus 로고    scopus 로고
    • Zitzler, E., Laumanns, M., & Thiele, L. (2001). SPEA2: Improving the strength Pareto evolutionary algorithm. In EUROGEN
    • Zitzler, E., Laumanns, M., & Thiele, L. (2001). SPEA2: Improving the strength Pareto evolutionary algorithm. In EUROGEN.
  • 7
    • 84939930277 scopus 로고    scopus 로고
    • Özdemir, S., Bara, A. A., & Khalil, Ö. A. Multi-objective evolutionary algorithm based on decomposition for energy efficient coverage in wireless sensor networks
    • Özdemir, S., Bara, A. A., & Khalil, Ö. A. Multi-objective evolutionary algorithm based on decomposition for energy efficient coverage in wireless sensor networks.
  • 9
    • 79251607125 scopus 로고    scopus 로고
    • Martins, F. V. C., Carrano, E. G., Wanner, E. F., Takahashi, R. H., & Mateus, G. R. (2011). A hybrid multi-objective evolutionary approach for improving the performance of wireless sensor networks. IEEE Sensors Journal, 11(3), 361–403
    • Martins, F. V. C., Carrano, E. G., Wanner, E. F., Takahashi, R. H., & Mateus, G. R. (2011). A hybrid multi-objective evolutionary approach for improving the performance of wireless sensor networks. IEEE Sensors Journal,11(3), 361–403.
  • 10
    • 84977782833 scopus 로고    scopus 로고
    • http://www.me.utexas.edu/bard/LP/LP20Handouts/CPLEX20Tutorial20Handout.
  • 11
    • 34547271882 scopus 로고    scopus 로고
    • Wang, P., & Wang, T. (2006). Adaptive routing for sensor networks using reinforcement learning. In CIT ’06 proceedings of the sixth IEEE international conference on computer and information technology, Charlotte Convention Center Charlotte, NC
    • Wang, P., & Wang, T. (2006). Adaptive routing for sensor networks using reinforcement learning. In CIT ’06 proceedings of the sixth IEEE international conference on computer and information technology, Charlotte Convention Center Charlotte, NC.
  • 12
    • 84939930281 scopus 로고    scopus 로고
    • Ye, Z., & Abouzeid, A. A. (2010). Layered sequential decision policies for cross-layer design of multihop wireless networks. In Information theory and applications workshop (ITA’10), San Diego, CA
    • Ye, Z., & Abouzeid, A. A. (2010). Layered sequential decision policies for cross-layer design of multihop wireless networks. In Information theory and applications workshop (ITA’10), San Diego, CA.
  • 13
    • 38149046443 scopus 로고    scopus 로고
    • Cognitive network management with reinforcement learning for wireless mesh networks
    • Lee, M., Marconett, D., Ye, X., & Yoo, S. (2007). Cognitive network management with reinforcement learning for wireless mesh networks. In IP operations and management, pp. 168–179, doi:10.1007/978-3-540-75853-2-15.
    • (2007) In IP operations and management , pp. 168-179
    • Lee, M.1    Marconett, D.2    Ye, X.3    Yoo, S.4
  • 15
    • 84939930282 scopus 로고    scopus 로고
    • Ad hoc on-demand distance vector (AODV) routing. Networking group request for comments (rfc): 3561, (2003)
    • Ad hoc on-demand distance vector (AODV) routing. Networking group request for comments (rfc): 3561, http://tools.ietf.org/html/rfc3561 (2003).
  • 16
    • 79960439729 scopus 로고    scopus 로고
    • Approximate policy iteration: A survey and some new methods. Journal of Control Theory and Applications, MIT, 9, 310–335
    • Bertsekas, D. P. (2010). Approximate policy iteration: A survey and some new methods. Journal of Control Theory and Applications, MIT, 9, 310–335, Report LIDS—2833.
    • (2010) Report LIDS—2833
    • Bertsekas, D.P.1
  • 17
    • 84939930284 scopus 로고    scopus 로고
    • Perkins, T. J., & Precup, D. (2002). A convergent form of approximate policy iteration. In Advance in neural information processing Systems 15, NIPS 2002, Decembre 9–14. Vancouver, British, Columbia, Canada
    • Perkins, T. J., & Precup, D. (2002). A convergent form of approximate policy iteration. In Advance in neural information processing Systems 15, NIPS 2002, Decembre 9–14. Vancouver, British, Columbia, Canada.
  • 18
    • 84977812989 scopus 로고    scopus 로고
    • www.eecs.harvard.edu/tmote-sky-datasheet.
  • 19
    • 0029185283 scopus 로고
    • Gudmundson, B: Time division multiple access methods for wireless personal communications. IEEE Communications Magazine
    • Falconer, D. D., Adachi, F., & Gudmundson, B. (1995). Time division multiple access methods for wireless personal communications. IEEE Communications Magazine. doi:10.1109/35.339881.
    • (1995)
    • Falconer, D.D.1    Adachi, F.2
  • 20
    • 34347251993 scopus 로고    scopus 로고
    • Adaptive low power listening for wireless sensor networks
    • Jurdak, R., Baldi, P., & Lopes, C. V. (2007). Adaptive low power listening for wireless sensor networks. IEEE Transactions on Mobile Computing, 6(8). doi:10.1109/TMC.2007.1037.
    • (2007) IEEE Transactions on Mobile Computing , vol.6 , Issue.8
    • Jurdak, R.1    Baldi, P.2    Lopes, C.V.3
  • 21
    • 0016596076 scopus 로고
    • Packetswitching in radio channels: carrier sense multiple-access modes and their throughput-delay characteristics
    • Kleinrock, L., & Tobagi, F. A. (1975). Packetswitching in radio channels: carrier sense multiple-access modes and their throughput-delay characteristics. IEEE Transactions on Communications, 23, 1400–1416.
    • (1975) IEEE Transactions on Communications , vol.23 , pp. 1400-1416
    • Kleinrock, L.1    Tobagi, F.A.2
  • 22
  • 23
    • 84939930287 scopus 로고    scopus 로고
    • Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. In A bradford book. MIT Press, Cambridge, MA
    • Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. In A bradford book. MIT Press, Cambridge, MA.
  • 26
    • 84939930288 scopus 로고    scopus 로고
    • Lagoudakis, M., & Parr, R. (2001). Model-free least-squares policy iteration. In Proceedings of NIPS
    • Lagoudakis, M., & Parr, R. (2001). Model-free least-squares policy iteration. In Proceedings of NIPS.
  • 28
    • 84896715082 scopus 로고    scopus 로고
    • A reinforcement learning based solution for cognitive network cooperation between co-located, heterogeneous wireless sensor networks
    • Rovcanin, M., Poorter, E. D., Moerman, I., & Demeester, P. (2014). A reinforcement learning based solution for cognitive network cooperation between co-located, heterogeneous wireless sensor networks. AD Hoc Networks, 17, 98–113.
    • (2014) AD Hoc Networks , vol.17 , pp. 98-113
    • Rovcanin, M.1    Poorter, E.D.2    Moerman, I.3    Demeester, P.4
  • 29
    • 85120720711 scopus 로고    scopus 로고
    • Akker, D. V. D., & Blondia, C. (2013). Virtual gateways: enabling connectivity between MAC heterogeneous sensor networks. International Journal of Sensor Networks, 14(3), 133–143 Inderscience
    • Akker, D. V. D., & Blondia, C. (2013). Virtual gateways: enabling connectivity between MAC heterogeneous sensor networks. International Journal of Sensor Networks, 14(3), 133–143 Inderscience.
  • 30
    • 80053579161 scopus 로고    scopus 로고
    • IDRA: A flexible system architecture for next generation wireless sensor networks
    • De Poorter, E., Troubleyn, E., Moerman, I., & Demeester, P. (2011). IDRA: A flexible system architecture for next generation wireless sensor networks. Wireless Networks, 17(6), 1423–1440.
    • (2011) Wireless Networks , vol.17 , Issue.6 , pp. 1423-1440
    • De Poorter, E.1    Troubleyn, E.2    Moerman, I.3    Demeester, P.4
  • 31
    • 84939930290 scopus 로고    scopus 로고
    • Tytgat, L., Jooris, B., De Mil, P., Latr, B., Moerman, I., & Demeester, P. UGentWiLab, a real-life wireless sensor testbed with environment emulation. In 6th European conference on wireless sensor networks (EWSN 2009)
    • Tytgat, L., Jooris, B., De Mil, P., Latr, B., Moerman, I., & Demeester, P. UGentWiLab, a real-life wireless sensor testbed with environment emulation. In 6th European conference on wireless sensor networks (EWSN 2009), URL:https://biblio.ugent.be/publication/676545.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.