메뉴 건너뛰기




Volumn 36, Issue , 2015, Pages 334-348

A binary ABC algorithm based on advanced similarity scheme for feature selection

Author keywords

Artificial bee colony; Classification; Feature selection; Particle swarm optimization

Indexed keywords

ALGORITHMS; BENCHMARKING; CLASSIFICATION (OF INFORMATION); EVOLUTIONARY ALGORITHMS; GENETIC ALGORITHMS; OPTIMIZATION; PARTICLE SWARM OPTIMIZATION (PSO);

EID: 84939813691     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2015.07.023     Document Type: Article
Times cited : (160)

References (77)
  • 1
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • I. Guyon, and A. Elisseeff An introduction to variable and feature selection J. Mach. Learn. Res. 3 2003 1157 1182
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 2
    • 0013326060 scopus 로고    scopus 로고
    • Feature selection for classification
    • M. Dash, and H. Liu Feature selection for classification Intell. Data Anal. 1 1-4 1997 131 156
    • (1997) Intell. Data Anal. , vol.1 , Issue.1-4 , pp. 131-156
    • Dash, M.1    Liu, H.2
  • 3
    • 84887799080 scopus 로고    scopus 로고
    • Particle swarm optimization for feature selection in classification: A multi-objective approach
    • B. Xue, Z. Mengjie, and W.N. Browne Particle swarm optimization for feature selection in classification: a multi-objective approach IEEE Trans. Cybern. 43 6 2013 1656 1671
    • (2013) IEEE Trans. Cybern. , vol.43 , Issue.6 , pp. 1656-1671
    • Xue, B.1    Mengjie, Z.2    Browne, W.N.3
  • 5
    • 84893720363 scopus 로고    scopus 로고
    • Particle swarm optimisation and statistical clustering for feature selection
    • S. Cranefield, A. Nayak (Eds.), AI 2013: Advances in Artificial Intelligence, Springer International Publishing
    • M. Lane, B. Xue, I. Liu, and M. Zhang Particle swarm optimisation and statistical clustering for feature selection S. Cranefield, A. Nayak (Eds.), AI 2013: Advances in Artificial Intelligence, vol. 8272 of Lecture Notes in Computer Science 2013 Springer International Publishing 214 220
    • (2013) Lecture Notes in Computer Science , vol.8272 , pp. 214-220
    • Lane, M.1    Xue, B.2    Liu, I.3    Zhang, M.4
  • 6
    • 0015125457 scopus 로고
    • A direct method of nonparametric measurement selection
    • A.W. Whitney A direct method of nonparametric measurement selection IEEE Trans. Comput. C-20 9 1971 1100 1103
    • (1971) IEEE Trans. Comput. , vol.C-20 , Issue.9 , pp. 1100-1103
    • Whitney, A.W.1
  • 7
    • 84914813506 scopus 로고    scopus 로고
    • On the effectiveness of receptors in recognition systems
    • T. Marill, and D. Green On the effectiveness of receptors in recognition systems IEEE Trans. Inf. Theory 9 1 2006 11 17
    • (2006) IEEE Trans. Inf. Theory , vol.9 , Issue.1 , pp. 11-17
    • Marill, T.1    Green, D.2
  • 8
    • 77951139898 scopus 로고    scopus 로고
    • A discrete particle swarm optimization method for feature selection in binary classification problems
    • A. Unler, and A. Murat A discrete particle swarm optimization method for feature selection in binary classification problems Eur. J. Oper. Res. 206 3 2010 528 539
    • (2010) Eur. J. Oper. Res. , vol.206 , Issue.3 , pp. 528-539
    • Unler, A.1    Murat, A.2
  • 9
    • 79958252965 scopus 로고    scopus 로고
    • An improved particle swarm optimization for feature selection
    • Y. Liu, G. Wang, H. Chen, H. Dong, X. Zhu, and S. Wang An improved particle swarm optimization for feature selection J. Bionic Eng. 8 2 2011 191 200
    • (2011) J. Bionic Eng. , vol.8 , Issue.2 , pp. 191-200
    • Liu, Y.1    Wang, G.2    Chen, H.3    Dong, H.4    Zhu, X.5    Wang, S.6
  • 10
    • 0032028297 scopus 로고    scopus 로고
    • Feature subset selection using a genetic algorithm
    • J. Yang, and V.G. Honavar Feature subset selection using a genetic algorithm IEEE Intell. Syst. 13 2 1998 44 49
    • (1998) IEEE Intell. Syst. , vol.13 , Issue.2 , pp. 44-49
    • Yang, J.1    Honavar, V.G.2
  • 12
    • 31744443319 scopus 로고    scopus 로고
    • D.J. Genetic programming for simultaneous feature selection and classifier design
    • D. Muni, and N. Pal D.J. Genetic programming for simultaneous feature selection and classifier design IEEE Trans. Syst. Man Cybern. B 36 1 2006 106 117
    • (2006) IEEE Trans. Syst. Man Cybern. B , vol.36 , Issue.1 , pp. 106-117
    • Muni, D.1    Pal, N.2
  • 13
    • 79955358243 scopus 로고    scopus 로고
    • P.M. An evolutionary computation approach to cognitive states classification
    • R. Ramirez P.M. An evolutionary computation approach to cognitive states classification IEEE Congress on Evolutionary Computation (CEC'07) 2007 1793 1799
    • (2007) IEEE Congress on Evolutionary Computation (CEC'07) , pp. 1793-1799
    • Ramirez, R.1
  • 14
    • 69149109819 scopus 로고    scopus 로고
    • A novel aco-ga hybrid algorithm for feature selection in protein function prediction
    • S. Nemati, M.E. Basiri, N. Ghasem-Aghaee, and M.H. Aghdam A novel aco-ga hybrid algorithm for feature selection in protein function prediction Expert Syst. Appl. 36 10 2009 12086 12094
    • (2009) Expert Syst. Appl. , vol.36 , Issue.10 , pp. 12086-12094
    • Nemati, S.1    Basiri, M.E.2    Ghasem-Aghaee, N.3    Aghdam, M.H.4
  • 15
    • 66549107477 scopus 로고    scopus 로고
    • Ant colony optimization algorithm for feature selection and classification of multispectral remote sensing image
    • L. Wen, Q. Yin, and P. Guo Ant colony optimization algorithm for feature selection and classification of multispectral remote sensing image IEEE International Geoscience and Remote Sensing Symposium (IGARSS2008), vol. 2 2008 II-923 II-926
    • (2008) IEEE International Geoscience and Remote Sensing Symposium (IGARSS2008) , vol.2 , pp. II923-II926
    • Wen, L.1    Yin, Q.2    Guo, P.3
  • 16
    • 34548479029 scopus 로고    scopus 로고
    • On the performance of artificial bee colony (ABC) algorithm
    • D. Karaboga, and B. Basturk On the performance of artificial bee colony (ABC) algorithm Appl. Soft Comput. 8 1 2008 687 697
    • (2008) Appl. Soft Comput. , vol.8 , Issue.1 , pp. 687-697
    • Karaboga, D.1    Basturk, B.2
  • 17
    • 84901190234 scopus 로고    scopus 로고
    • A comprehensive survey: Artificial bee colony (ABC) algorithm and applications
    • D. Karaboga, B. Gorkemli, C. Ozturk, and N. Karaboga A comprehensive survey: artificial bee colony (ABC) algorithm and applications Artif. Intell. Rev. 42 1 2014 21 57
    • (2014) Artif. Intell. Rev. , vol.42 , Issue.1 , pp. 21-57
    • Karaboga, D.1    Gorkemli, B.2    Ozturk, C.3    Karaboga, N.4
  • 18
    • 84914816279 scopus 로고    scopus 로고
    • Data feature selection based on artificial bee colony algorithm
    • M. Schiezaro, and H. Pedrini Data feature selection based on artificial bee colony algorithm EURASIP J. Image Video Process. 2013 1 2013 1 8
    • (2013) EURASIP J. Image Video Process. , vol.2013 , Issue.1 , pp. 1-8
    • Schiezaro, M.1    Pedrini, H.2
  • 19
    • 84883204011 scopus 로고    scopus 로고
    • Feature selection method based on artificial bee colony algorithm and support vector machines for medical datasets classification
    • M.S. Uzer, Y. Nihat, and O. Inan Feature selection method based on artificial bee colony algorithm and support vector machines for medical datasets classification Sci. World J. 2013 2013 1 10
    • (2013) Sci. World J. , vol.2013 , pp. 1-10
    • Uzer, M.S.1    Nihat, Y.2    Inan, O.3
  • 20
    • 84939779587 scopus 로고    scopus 로고
    • Performance of classification using a hybrid distance measure with artificial bee colony algorithm for feature selection in keystroke dynamics
    • M. Akila, and S.S. Kumar Performance of classification using a hybrid distance measure with artificial bee colony algorithm for feature selection in keystroke dynamics Int. J. Comput. Intell. Stud. 2 2 2013 187 197
    • (2013) Int. J. Comput. Intell. Stud. , vol.2 , Issue.2 , pp. 187-197
    • Akila, M.1    Kumar, S.S.2
  • 21
    • 81155126173 scopus 로고    scopus 로고
    • Disabc: A new artificial bee colony algorithm for binary optimization
    • M.H. Kashan, N. Nahavandi, and A.H. Kashan Disabc: a new artificial bee colony algorithm for binary optimization Appl. Soft Comput. 12 1 2012 342 352
    • (2012) Appl. Soft Comput. , vol.12 , Issue.1 , pp. 342-352
    • Kashan, M.H.1    Nahavandi, N.2    Kashan, A.H.3
  • 24
    • 77954834847 scopus 로고    scopus 로고
    • A new quantum-inspired binary pso: Application to unit commitment problems for power systems
    • J. Yun-Won, P. Jong-Bae, J. Se-Hwan, and K.Y. Lee A new quantum-inspired binary pso: application to unit commitment problems for power systems IEEE Trans. Power Syst. 25 3 2010 1486 1495
    • (2010) IEEE Trans. Power Syst. , vol.25 , Issue.3 , pp. 1486-1495
    • Yun-Won, J.1    Jong-Bae, P.2    Se-Hwan, J.3    Lee, K.Y.4
  • 26
    • 84857832525 scopus 로고    scopus 로고
    • A modified artificial bee colony algorithm for real-parameter optimization
    • B. Akay, and D. Karaboga A modified artificial bee colony algorithm for real-parameter optimization Inf. Sci. 192 2012 120 142
    • (2012) Inf. Sci. , vol.192 , pp. 120-142
    • Akay, B.1    Karaboga, D.2
  • 27
    • 84894214202 scopus 로고    scopus 로고
    • Genetic algorithms
    • J.H. Holland Genetic algorithms Scholarpedia 7 12 2012 1482
    • (2012) Scholarpedia , vol.7 , Issue.12 , pp. 1482
    • Holland, J.H.1
  • 29
  • 30
    • 84886723307 scopus 로고    scopus 로고
    • Synergizing fitness learning with proximity-based food source selection in artificial bee colony algorithm for numerical optimization
    • S. Das, S. Biswas, and S. Kundu Synergizing fitness learning with proximity-based food source selection in artificial bee colony algorithm for numerical optimization Appl. Soft Comput. 13 12 2013 4676 4694
    • (2013) Appl. Soft Comput. , vol.13 , Issue.12 , pp. 4676-4694
    • Das, S.1    Biswas, S.2    Kundu, S.3
  • 31
    • 35148821762 scopus 로고    scopus 로고
    • A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm
    • D. Karaboga, and B. Basturk A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm J. Glob. Optim. 39 3 2007 459 471
    • (2007) J. Glob. Optim. , vol.39 , Issue.3 , pp. 459-471
    • Karaboga, D.1    Basturk, B.2
  • 32
    • 78650797552 scopus 로고    scopus 로고
    • A survey of binary similarity and distance measures
    • S. Seok Choi, and S. Hyuk Cha A survey of binary similarity and distance measures J. Syst. Cybern. Inf. 2010 43 48
    • (2010) J. Syst. Cybern. Inf. , pp. 43-48
    • Seok Choi, S.1    Hyuk Cha, S.2
  • 33
    • 84980090975 scopus 로고
    • The distribution of the flora in the alpine zone
    • P. Jaccard The distribution of the flora in the alpine zone New Phytol. 11 1912 37 50
    • (1912) New Phytol. , vol.11 , pp. 37-50
    • Jaccard, P.1
  • 35
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • A. Blum, and P. Langley Selection of relevant features and examples in machine learning Artif. Intell. 97 1-2 1997 245 271
    • (1997) Artif. Intell. , vol.97 , Issue.1-2 , pp. 245-271
    • Blum, A.1    Langley, P.2
  • 36
    • 84897113235 scopus 로고    scopus 로고
    • Particle swarm optimisation for feature selection in classification: Novel initialisation and updating mechanisms
    • B. Xue, M. Zhang, and W.N. Browne Particle swarm optimisation for feature selection in classification: novel initialisation and updating mechanisms Appl. Soft Comput. 18 2014 261 276
    • (2014) Appl. Soft Comput. , vol.18 , pp. 261-276
    • Xue, B.1    Zhang, M.2    Browne, W.N.3
  • 39
    • 84871389617 scopus 로고    scopus 로고
    • A dimension reduction approach to classification based on particle swarm optimisation and rough set theory
    • Springer
    • L. Cervante, B. Xue, L. Shang, and M. Zhang A dimension reduction approach to classification based on particle swarm optimisation and rough set theory AI 2012: Advances in Artificial Intelligence 2012 Springer 313 325
    • (2012) AI 2012: Advances in Artificial Intelligence , pp. 313-325
    • Cervante, L.1    Xue, B.2    Shang, L.3    Zhang, M.4
  • 40
    • 84875116101 scopus 로고    scopus 로고
    • A multi-objective feature selection approach based on binary pso and rough set theory
    • Evolutionary Computation in Combinatorial Optimization, Springer Berlin, Heidelberg
    • L. Cervante, B. Xue, L. Shang, and M. Zhang A multi-objective feature selection approach based on binary pso and rough set theory Evolutionary Computation in Combinatorial Optimization, vol. 7832 of Lecture Notes in Computer Science 2013 Springer Berlin, Heidelberg 25 36
    • (2013) Lecture Notes in Computer Science , vol.7832 , pp. 25-36
    • Cervante, L.1    Xue, B.2    Shang, L.3    Zhang, M.4
  • 44
    • 0028496468 scopus 로고
    • Learning boolean concepts in the presence of many irrelevant features
    • H. Almuallim, and T.G. Dietterich Learning boolean concepts in the presence of many irrelevant features Artif. Intell. 69 1994 279 305
    • (1994) Artif. Intell. , vol.69 , pp. 279-305
    • Almuallim, H.1    Dietterich, T.G.2
  • 45
  • 46
    • 33847646332 scopus 로고    scopus 로고
    • Wrapper-filter feature selection algorithm using a memetic framework
    • Z. Zhu, Y.-S. Ong, and M. Dash Wrapper-filter feature selection algorithm using a memetic framework IEEE Trans. Syst. Man Cybern. B 37 1 2007 70 76
    • (2007) IEEE Trans. Syst. Man Cybern. B , vol.37 , Issue.1 , pp. 70-76
    • Zhu, Z.1    Ong, Y.-S.2    Dash, M.3
  • 47
    • 84904575736 scopus 로고    scopus 로고
    • Improving feature ranking for biomarker discovery in proteomics mass spectrometry data using genetic programming
    • S. Ahmed, M. Zhang, and L. Peng Improving feature ranking for biomarker discovery in proteomics mass spectrometry data using genetic programming Connect. Sci. 26 3 2014 215 243
    • (2014) Connect. Sci. , vol.26 , Issue.3 , pp. 215-243
    • Ahmed, S.1    Zhang, M.2    Peng, L.3
  • 48
    • 84865988461 scopus 로고    scopus 로고
    • A survey on particle swarm optimization in feature selection
    • P.V. Krishna, M.R. Babu, E. Ariwa (Eds.), Global Trends in Information Systems and Software Applications, Springer Berlin, Heidelberg chapter 22
    • V. Kothari, J. Anuradha, S. Shah, and P. Mittal A survey on particle swarm optimization in feature selection P.V. Krishna, M.R. Babu, E. Ariwa (Eds.), Global Trends in Information Systems and Software Applications, vol. 270 of Communications in Computer and Information Science 2012 Springer Berlin, Heidelberg 192 201 chapter 22
    • (2012) Communications in Computer and Information Science , vol.270 , pp. 192-201
    • Kothari, V.1    Anuradha, J.2    Shah, S.3    Mittal, P.4
  • 49
    • 84921364719 scopus 로고    scopus 로고
    • Overview of particle swarm optimisation for feature selection in classification
    • Simulated Evolution and Learning, Springer International Publishing
    • B. Tran, B. Xue, and M. Zhang Overview of particle swarm optimisation for feature selection in classification Simulated Evolution and Learning, vol. 8886 of Lecture Notes in Computer Science 2014 Springer International Publishing 605 617
    • (2014) Lecture Notes in Computer Science , vol.8886 , pp. 605-617
    • Tran, B.1    Xue, B.2    Zhang, M.3
  • 50
    • 33846273453 scopus 로고    scopus 로고
    • Performing feature selection with aco
    • A. Abraham, C. Grosan, V. Ramos (Eds.), Swarm Intelligence in Data Mining, Springer Berlin, Heidelberg
    • R. Jensen Performing feature selection with aco A. Abraham, C. Grosan, V. Ramos (Eds.), Swarm Intelligence in Data Mining, vol. 34 of Studies in Computational Intelligence 2006 Springer Berlin, Heidelberg 45 73 10.1007/978-3-540-34956-3-3
    • (2006) Studies in Computational Intelligence , pp. 45-73
    • Jensen, R.1
  • 53
    • 84928209552 scopus 로고    scopus 로고
    • An ant colony optimization based feature selection for web page classification
    • E. Sarac, and S.A. Ozel An ant colony optimization based feature selection for web page classification Sci. World J. 2014 1 16
    • (2014) Sci. World J. , pp. 1-16
    • Sarac, E.1    Ozel, S.A.2
  • 54
    • 84886738635 scopus 로고    scopus 로고
    • Evolutionary computation for feature selection in classification problems
    • B. de la Iglesia Evolutionary computation for feature selection in classification problems Wiley Interdiscip. Rev. 3 6 2013 381 407
    • (2013) Wiley Interdiscip. Rev. , vol.3 , Issue.6 , pp. 381-407
    • De La Iglesia, B.1
  • 55
    • 84907934368 scopus 로고    scopus 로고
    • Color quantization: A short review and an application with artificial bee colony algorithm
    • C. Ozturk, E. Hancer, and D. Karaboga Color quantization: a short review and an application with artificial bee colony algorithm Informatica 25 3 2014 485 503
    • (2014) Informatica , vol.25 , Issue.3 , pp. 485-503
    • Ozturk, C.1    Hancer, E.2    Karaboga, D.3
  • 56
    • 84937813755 scopus 로고    scopus 로고
    • Improved clustering criterion for image clustering with artificial bee colony algorithm
    • C. Ozturk, E. Hancer, and D. Karaboga Improved clustering criterion for image clustering with artificial bee colony algorithm Pattern Anal. Appl. 18 2014 587 599
    • (2014) Pattern Anal. Appl. , vol.18 , pp. 587-599
    • Ozturk, C.1    Hancer, E.2    Karaboga, D.3
  • 57
    • 84920126432 scopus 로고    scopus 로고
    • Automatic clustering with global best artificial bee colony algorithm
    • C. Ozturk, E. Hancer, and D. Karaboga Automatic clustering with global best artificial bee colony algorithm J. Fac. Eng. Arch. Gazi Univ. 29 4 2014 677 687
    • (2014) J. Fac. Eng. Arch. Gazi Univ. , vol.29 , Issue.4 , pp. 677-687
    • Ozturk, C.1    Hancer, E.2    Karaboga, D.3
  • 58
    • 84939805469 scopus 로고    scopus 로고
    • Artificial bee colony based feature selection for effective cardiovascular disease diagnosis
    • B. Subanya, and R. Rajalaxmi Artificial bee colony based feature selection for effective cardiovascular disease diagnosis Int. J. Sci./Eng. Res. 5 5 2014 606 612
    • (2014) Int. J. Sci./Eng. Res. , vol.5 , Issue.5 , pp. 606-612
    • Subanya, B.1    Rajalaxmi, R.2
  • 60
    • 79953281036 scopus 로고    scopus 로고
    • An independent rough set approach hybrid with artificial bee colony algorithm for dimensionality reduction
    • N. Suguna, and K.G. Thanushkodi An independent rough set approach hybrid with artificial bee colony algorithm for dimensionality reduction Am. J. Appl. Sci. 8 3 2011 261 266
    • (2011) Am. J. Appl. Sci. , vol.8 , Issue.3 , pp. 261-266
    • Suguna, N.1    Thanushkodi, K.G.2
  • 61
    • 84889584547 scopus 로고    scopus 로고
    • Xor-based artificial bee colony algorithm for binary optimization
    • M.S. Kiran, and M. Gunduz Xor-based artificial bee colony algorithm for binary optimization Turk. J. Electr. Eng. Comput. Sci. 21 2013 2307 2328
    • (2013) Turk. J. Electr. Eng. Comput. Sci. , vol.21 , pp. 2307-2328
    • Kiran, M.S.1    Gunduz, M.2
  • 62
    • 84855278833 scopus 로고    scopus 로고
    • Memetic algorithms and memetic computing optimization: A literature review
    • F. Neri, and C. Cotta Memetic algorithms and memetic computing optimization: a literature review Swarm Evol. Comput. 2 2012 1 14
    • (2012) Swarm Evol. Comput. , vol.2 , pp. 1-14
    • Neri, F.1    Cotta, C.2
  • 63
    • 77951278725 scopus 로고    scopus 로고
    • Memetic computation-past, present & future [research frontier]
    • O. Yew-Soon, L. Meng-Hiot, and C. Xianshun Memetic computation-past, present & future [research frontier] IEEE Comput. Intell. Mag. 5 2 2010 24 31
    • (2010) IEEE Comput. Intell. Mag. , vol.5 , Issue.2 , pp. 24-31
    • Yew-Soon, O.1    Meng-Hiot, L.2    Xianshun, C.3
  • 64
    • 84877730565 scopus 로고    scopus 로고
    • A novel differential evolution algorithm for binary optimization
    • M.H. Kashan, A.H. Kashan, and N. Nahavandi A novel differential evolution algorithm for binary optimization Comput. Optim. Appl. 55 2 2013 481 513
    • (2013) Comput. Optim. Appl. , vol.55 , Issue.2 , pp. 481-513
    • Kashan, M.H.1    Kashan, A.H.2    Nahavandi, N.3
  • 69
    • 84875210170 scopus 로고    scopus 로고
    • S-shaped versus v-shaped transfer functions for binary particle swarm optimization
    • S. Mirjalili, and A. Lewis S-shaped versus v-shaped transfer functions for binary particle swarm optimization Swarm Evol. Comput. 9 2013 1 14
    • (2013) Swarm Evol. Comput. , vol.9 , pp. 1-14
    • Mirjalili, S.1    Lewis, A.2
  • 70
    • 84925368905 scopus 로고    scopus 로고
    • Genetic algorithm implementation using matlab
    • Springer Berlin, Heidelberg
    • S. Sivanandam, and S. Deepa Genetic algorithm implementation using matlab Introduction to Genetic Algorithms 2008 Springer Berlin, Heidelberg 211 262
    • (2008) Introduction to Genetic Algorithms , pp. 211-262
    • Sivanandam, S.1    Deepa, S.2
  • 71
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • R. Kohavi, and G.H. John Wrappers for feature subset selection Artif. Intell. 97 1-22 1997 273 324
    • (1997) Artif. Intell. , vol.97 , Issue.1-22 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 72
    • 84925631123 scopus 로고    scopus 로고
    • Pattern matching based classification using ant colony optimization based feature selection
    • 0
    • N. Sreeja, and A. Sankar Pattern matching based classification using ant colony optimization based feature selection Appl. Soft Comput. 31 0 2015 91 102
    • (2015) Appl. Soft Comput. , vol.31 , pp. 91-102
    • Sreeja, N.1    Sankar, A.2
  • 73
    • 84924050625 scopus 로고    scopus 로고
    • An advanced ACO algorithm for feature subset selection
    • 0 Advances in Self-Organizing Maps Subtitle of the special issue: Selected Papers from the Workshop on Self-Organizing Maps 2012 (WSOM 2012)
    • S. Kashef, and H. Nezamabadi-pour An advanced ACO algorithm for feature subset selection Neurocomputing 147 0 2015 271 279 Advances in Self-Organizing Maps Subtitle of the special issue: Selected Papers from the Workshop on Self-Organizing Maps 2012 (WSOM 2012)
    • (2015) Neurocomputing , vol.147 , pp. 271-279
    • Kashef, S.1    Nezamabadi-Pour, H.2
  • 74
    • 84926431460 scopus 로고    scopus 로고
    • Ions motion algorithm for solving optimization problems
    • B. Javidy, A. Hatamlou, and S. Mirjalili Ions motion algorithm for solving optimization problems Appl. Soft Comput. 32 2015 72 79
    • (2015) Appl. Soft Comput. , vol.32 , pp. 72-79
    • Javidy, B.1    Hatamlou, A.2    Mirjalili, S.3
  • 75
    • 84926471634 scopus 로고    scopus 로고
    • Heart: A novel optimization algorithm for cluster analysis
    • Springer Berlin, Heidelberg
    • A. Hatamlou Heart: a novel optimization algorithm for cluster analysis Progress in Artificial Intelligence vol. 2 2014 Springer Berlin, Heidelberg 167 173
    • (2014) Progress in Artificial Intelligence , vol.2 , pp. 167-173
    • Hatamlou, A.1
  • 76
    • 84870058393 scopus 로고    scopus 로고
    • Black hole: A new heuristic optimization approach for data clustering
    • A. Hatamlou Black hole: a new heuristic optimization approach for data clustering Inf. Sci. 222 2013 175 184
    • (2013) Inf. Sci. , vol.222 , pp. 175-184
    • Hatamlou, A.1
  • 77
    • 84903730957 scopus 로고    scopus 로고
    • Binary PSO and rough set theory for feature selection: A multi-objective filter based approach
    • 1450009-1-1450009-34
    • B. Xue, L. Cervante, L. Shang, W. Browne, and M. Zhang Binary PSO and rough set theory for feature selection: a multi-objective filter based approach Int. J. Comput. Intell. Appl. (IJCIA) 13 June (2) 2014 10.1142/S1469026814500096 1450009-1-1450009-34 (34 pp.)
    • (2014) Int. J. Comput. Intell. Appl. (IJCIA) , vol.13 , Issue.2 JUNE
    • Xue, B.1    Cervante, L.2    Shang, L.3    Browne, W.4    Zhang, M.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.