메뉴 건너뛰기




Volumn 117, Issue , 2015, Pages 186-193

Investigating the use of gradient boosting machine, random forest and their ensemble to predict skin flavonoid content from berry physical-mechanical characteristics in wine grapes

Author keywords

Flavonoids; Gradient Boosting Machine (GBM); Random forest; Texture analysis; Wine grape

Indexed keywords

ADAPTIVE BOOSTING; ARTIFICIAL INTELLIGENCE; COST EFFECTIVENESS; DECISION TREES; FLAVONOIDS; FRUITS; LEARNING ALGORITHMS; MEAN SQUARE ERROR; WINE;

EID: 84939787273     PISSN: 01681699     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compag.2015.07.017     Document Type: Article
Times cited : (42)

References (48)
  • 1
    • 0037076322 scopus 로고    scopus 로고
    • Selection bias in gene extraction on the basis of microarray gene-expression data
    • Ambroise C., McLachlan G.J. Selection bias in gene extraction on the basis of microarray gene-expression data. PNAS 2002, 99:6562-6566.
    • (2002) PNAS , vol.99 , pp. 6562-6566
    • Ambroise, C.1    McLachlan, G.J.2
  • 2
    • 79958854574 scopus 로고    scopus 로고
    • Berry size and qualitative characteristics of Vitis vinifera L. cv. Syrah
    • Barbagallo M.G., Guidoni S., Hunter J.J. Berry size and qualitative characteristics of Vitis vinifera L. cv. Syrah. S. Afr. J. Enol. Vitic. 2011, 32:129-136.
    • (2011) S. Afr. J. Enol. Vitic. , vol.32 , pp. 129-136
    • Barbagallo, M.G.1    Guidoni, S.2    Hunter, J.J.3
  • 3
    • 84932634396 scopus 로고    scopus 로고
    • Winegrape berry skin thickness determination: comparison between histological observations and texture analysis determination
    • Battista F., Tomasi D., Porro D., Caicci F., Giacosa S., Rolle L. Winegrape berry skin thickness determination: comparison between histological observations and texture analysis determination. Ital. J. Food Sci. 2015, 27:136-141.
    • (2015) Ital. J. Food Sci. , vol.27 , pp. 136-141
    • Battista, F.1    Tomasi, D.2    Porro, D.3    Caicci, F.4    Giacosa, S.5    Rolle, L.6
  • 5
    • 0003619255 scopus 로고    scopus 로고
    • Technical report 460 Statistics Department University of California.
    • Breiman, L., 1996. Bias, variance, and arcing classifiers. In: Technical report 460 Statistics Department University of California.
    • (1996) Bias, variance, and arcing classifiers.
    • Breiman, L.1
  • 6
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Mach. Learn. 1996, 24:123-140.
    • (1996) Mach. Learn. , vol.24 , pp. 123-140
    • Breiman, L.1
  • 8
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach. Learn. 2001, 45:5-32.
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 9
    • 84921670399 scopus 로고    scopus 로고
    • The role of visible and infrared spectroscopy combined with chemometrics to measure phenolic compounds in grape and wine samples
    • Cozzolino D. The role of visible and infrared spectroscopy combined with chemometrics to measure phenolic compounds in grape and wine samples. Molecules 2015, 20:726-737.
    • (2015) Molecules , vol.20 , pp. 726-737
    • Cozzolino, D.1
  • 13
    • 0031536511 scopus 로고    scopus 로고
    • Improvements on cross-validation: the 632+ bootstrap method
    • Efron B., Tibshirani R. Improvements on cross-validation: the 632+ bootstrap method. J. Am. Stat. Assoc. 1997, 92(438):548-560.
    • (1997) J. Am. Stat. Assoc. , vol.92 , Issue.438 , pp. 548-560
    • Efron, B.1    Tibshirani, R.2
  • 15
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund Y., Schapire R. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 1997, 55:119-139.
    • (1997) J. Comput. Syst. Sci. , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.2
  • 16
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: a gradient boosting machine
    • Friedman J.H. Greedy function approximation: a gradient boosting machine. Ann. Stat. 2001, 29:1189-1232.
    • (2001) Ann. Stat. , vol.29 , pp. 1189-1232
    • Friedman, J.H.1
  • 17
    • 84890034246 scopus 로고    scopus 로고
    • Volatile fingerprint and physico-mechanical properties of 'Muscat blanc' grapes grown in mountain area: a first evidence of the influence of water regimes
    • Giordano M., Zecca O., Belviso S., Reinotti M., Gerbi V., Rolle L. Volatile fingerprint and physico-mechanical properties of 'Muscat blanc' grapes grown in mountain area: a first evidence of the influence of water regimes. Ital. J. Food Sci. 2013, 25:329-338.
    • (2013) Ital. J. Food Sci. , vol.25 , pp. 329-338
    • Giordano, M.1    Zecca, O.2    Belviso, S.3    Reinotti, M.4    Gerbi, V.5    Rolle, L.6
  • 20
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using Support Vector Machines
    • Guyon I., Weston J., Barnhill S., Vladimir V. Gene selection for cancer classification using Support Vector Machines. Mach. Learn. 2002, 46:389-422.
    • (2002) Mach. Learn. , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vladimir, V.4
  • 23
    • 79551573834 scopus 로고    scopus 로고
    • A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables
    • Ignat I., Volf I., Popa V.I. A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem. 2011, 126:1821-1835.
    • (2011) Food Chem. , vol.126 , pp. 1821-1835
    • Ignat, I.1    Volf, I.2    Popa, V.I.3
  • 25
    • 84939821808 scopus 로고    scopus 로고
    • Caret: classification and regression training. R package version 6.0-37
    • Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T., 2014. Caret: classification and regression training. R package version 6.0-37. http://www.CRAN.R-project.org/package=caret.
    • (2014)
    • Kuhn, M.1    Wing, J.2    Weston, S.3    Williams, A.4    Keefer, C.5    Engelhardt, A.6    Cooper, T.7
  • 26
    • 33746574516 scopus 로고    scopus 로고
    • Influence of vineyard location and vine water status on fruit maturation of non-irrigated cv. Agiorgitiko (Vitis vinifera L.). Effects on wine phenolic and aroma components
    • Koundouras S., Marinos V., Gkoulioti A., Kotseridis Y., Van Leeuwen C. Influence of vineyard location and vine water status on fruit maturation of non-irrigated cv. Agiorgitiko (Vitis vinifera L.). Effects on wine phenolic and aroma components. J. Agric. Food Chem. 2006, 54:5077-5086.
    • (2006) J. Agric. Food Chem. , vol.54 , pp. 5077-5086
    • Koundouras, S.1    Marinos, V.2    Gkoulioti, A.3    Kotseridis, Y.4    Van Leeuwen, C.5
  • 27
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by randomForest
    • Liaw A., Wiener M. Classification and regression by randomForest. R News 2002, 2(3):18-22.
    • (2002) R News , vol.2 , Issue.3 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 28
    • 51949095023 scopus 로고    scopus 로고
    • Mechanical behavior of wine grapes under compression tests
    • Letaief H., Rolle L., Gerbi V. Mechanical behavior of wine grapes under compression tests. Am. J. Enol. Vitic. 2008, 59:323-329.
    • (2008) Am. J. Enol. Vitic. , vol.59 , pp. 323-329
    • Letaief, H.1    Rolle, L.2    Gerbi, V.3
  • 29
    • 84872837005 scopus 로고    scopus 로고
    • Evolution of analysis of polyhenols from grapes, wines, and extracts
    • Lorrain B., Ky I., Pechamat L., Teissedre P.L. Evolution of analysis of polyhenols from grapes, wines, and extracts. Molecules 2013, 18(1):1076-1100.
    • (2013) Molecules , vol.18 , Issue.1 , pp. 1076-1100
    • Lorrain, B.1    Ky, I.2    Pechamat, L.3    Teissedre, P.L.4
  • 30
    • 45549089760 scopus 로고    scopus 로고
    • LDL isolated from plasma-loaded red wine procyanidins resist lipid oxidation and tocopherol depletion
    • Lourenço F., Gago B., Barbosa R.M., De Freitas V., Laranjinha J. LDL isolated from plasma-loaded red wine procyanidins resist lipid oxidation and tocopherol depletion. J. Agric. Food Chem. 2008, 56:3798-3804.
    • (2008) J. Agric. Food Chem. , vol.56 , pp. 3798-3804
    • Lourenço, F.1    Gago, B.2    Barbosa, R.M.3    De Freitas, V.4    Laranjinha, J.5
  • 31
    • 84867418169 scopus 로고    scopus 로고
    • Applying additive modelling and gradient boosting to assess the effects of watershed and reach characteristics on riverine assemblages
    • Maloney K.O., Schmid M., Weller D.E. Applying additive modelling and gradient boosting to assess the effects of watershed and reach characteristics on riverine assemblages. Methods Ecol. Evol. 2012, 3:116-128.
    • (2012) Methods Ecol. Evol. , vol.3 , pp. 116-128
    • Maloney, K.O.1    Schmid, M.2    Weller, D.E.3
  • 32
    • 67649892613 scopus 로고    scopus 로고
    • Effects of red wine polyphenolic compounds on paraoxonase-1 and lectin-like oxidized low-density lipoprotein receptor-1 in hyperhomocysteinemic mice
    • Noll C., Hamelet J., Matulewicz E., Paul J.L., Delabar J.M., Janel N. Effects of red wine polyphenolic compounds on paraoxonase-1 and lectin-like oxidized low-density lipoprotein receptor-1 in hyperhomocysteinemic mice. J. Nutr. Biochem. 2009, 20:586-596.
    • (2009) J. Nutr. Biochem. , vol.20 , pp. 586-596
    • Noll, C.1    Hamelet, J.2    Matulewicz, E.3    Paul, J.L.4    Delabar, J.M.5    Janel, N.6
  • 33
    • 84863304598 scopus 로고    scopus 로고
    • R Foundation for Statistical Computing, Vienna, Austria
    • R Core Team R: A language and environment for statistical computing 2014, R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org/
    • (2014) R: A language and environment for statistical computing
  • 34
    • 84939821809 scopus 로고    scopus 로고
    • Gbm: generalized boosted regression models. R package version 2.1
    • Ridgeway, G., 2013. Gbm: generalized boosted regression models. R package version 2.1. http://www.CRAN.R-project.org/package=gbm.
    • (2013)
    • Ridgeway, G.1
  • 35
    • 79958854407 scopus 로고    scopus 로고
    • Flavonoids and C13-norisoprenoids in Vitis vinifera L. cv. Shiraz: Relationships between grape and wine composition, wine colour and wine sensory properties
    • Ristic R., Bindon K., Francis L.I., Herderich M.J., Iland P.G. Flavonoids and C13-norisoprenoids in Vitis vinifera L. cv. Shiraz: Relationships between grape and wine composition, wine colour and wine sensory properties. Aust. J. Grape Wine Res. 2010, 16:369-388.
    • (2010) Aust. J. Grape Wine Res. , vol.16 , pp. 369-388
    • Ristic, R.1    Bindon, K.2    Francis, L.I.3    Herderich, M.J.4    Iland, P.G.5
  • 36
  • 37
    • 78651107150 scopus 로고    scopus 로고
    • Instrumental texture analysis parameters as winegrapes varietal markers and ripeness predictors
    • Río Segade S., Orriols I., Giacosa S., Rolle L. Instrumental texture analysis parameters as winegrapes varietal markers and ripeness predictors. Int. J. Food Prop. 2011, 14:1318-1329.
    • (2011) Int. J. Food Prop. , vol.14 , pp. 1318-1329
    • Río Segade, S.1    Orriols, I.2    Giacosa, S.3    Rolle, L.4
  • 38
    • 78651351183 scopus 로고    scopus 로고
    • Possible use of texture characteristics of winegrapes as markers for zoning and their relationship with anthocyanin extractability index
    • Río Segade S., Soto Vázquez E., Orriols I., Giacosa S., Rolle L. Possible use of texture characteristics of winegrapes as markers for zoning and their relationship with anthocyanin extractability index. Int. J. Food Sci. Technol. 2011, 46:386-394.
    • (2011) Int. J. Food Sci. Technol. , vol.46 , pp. 386-394
    • Río Segade, S.1    Soto Vázquez, E.2    Orriols, I.3    Giacosa, S.4    Rolle, L.5
  • 39
    • 77958459736 scopus 로고    scopus 로고
    • Berry skin thickness as main texture parameter to predict anthocyanin extractability in winegrapes
    • Río Segade S., Giacosa S., Gerbi V., Rolle L. Berry skin thickness as main texture parameter to predict anthocyanin extractability in winegrapes. LWT-Food Sci. Technol. 2011, 44:392-398.
    • (2011) LWT-Food Sci. Technol. , vol.44 , pp. 392-398
    • Río Segade, S.1    Giacosa, S.2    Gerbi, V.3    Rolle, L.4
  • 40
    • 80051761466 scopus 로고    scopus 로고
    • Influence of grape density at harvest date on changes in phenolic composition, phenol extractability indices, and instrumental texture properties during ripening
    • Rolle L., Rio Segade S., Torchio F., Giacosa S., Cagnasso E., Marengo F. Influence of grape density at harvest date on changes in phenolic composition, phenol extractability indices, and instrumental texture properties during ripening. J. Agric. Food Chem. 2011, 59:8796-8805.
    • (2011) J. Agric. Food Chem. , vol.59 , pp. 8796-8805
    • Rolle, L.1    Rio Segade, S.2    Torchio, F.3    Giacosa, S.4    Cagnasso, E.5    Marengo, F.6
  • 41
    • 84865697174 scopus 로고    scopus 로고
    • Rapid methods for the evaluation of total phenol content and extractability in intact grape seeds of Cabernet-Sauvignon: Instrumental mechanical properties and FT-NIR spectrum
    • Rolle L., Torchio F., Lorrain B., Giacosa S., Río Segade S., Cagnasso E., Gerbi V., Teissedre P.L. Rapid methods for the evaluation of total phenol content and extractability in intact grape seeds of Cabernet-Sauvignon: Instrumental mechanical properties and FT-NIR spectrum. J. Int. Sci. Vigne Vin 2012, 46:29-40.
    • (2012) J. Int. Sci. Vigne Vin , vol.46 , pp. 29-40
    • Rolle, L.1    Torchio, F.2    Lorrain, B.3    Giacosa, S.4    Río Segade, S.5    Cagnasso, E.6    Gerbi, V.7    Teissedre, P.L.8
  • 42
    • 80051735164 scopus 로고    scopus 로고
    • Influence of wine-grape skin hardness on the kinetics of anthocyanin extraction
    • Rolle L., Torchio F., Ferrandino A., Guidoni S. Influence of wine-grape skin hardness on the kinetics of anthocyanin extraction. Int. J. Food Prop. 2012, 15:249-261.
    • (2012) Int. J. Food Prop. , vol.15 , pp. 249-261
    • Rolle, L.1    Torchio, F.2    Ferrandino, A.3    Guidoni, S.4
  • 43
    • 84884471906 scopus 로고    scopus 로고
    • Use of instrumental acoustic parameters of winegrape seeds as possible predictors of extractable phenolic compounds
    • Rolle L., Giacosa S., Torchio F., Perenzoni D., Río Segade S., Gerbi V., Mattivi F. Use of instrumental acoustic parameters of winegrape seeds as possible predictors of extractable phenolic compounds. J. Agric. Food Chem. 2013, 61:8752-8764.
    • (2013) J. Agric. Food Chem. , vol.61 , pp. 8752-8764
    • Rolle, L.1    Giacosa, S.2    Torchio, F.3    Perenzoni, D.4    Río Segade, S.5    Gerbi, V.6    Mattivi, F.7
  • 45
    • 84939821810 scopus 로고    scopus 로고
    • rpart: Recursive Partitioning and Regression Trees. R package version 4.1-9.
    • Therneau, T., Atkinson, B., Ripley, B., 2015. rpart: Recursive Partitioning and Regression Trees. R package version 4.1-9. http://www.CRAN.R-project.org/package=rpart.
    • (2015)
    • Therneau, T.1    Atkinson, B.2    Ripley, B.3
  • 46
    • 33847096395 scopus 로고    scopus 로고
    • Bias in random forest variable importance measures: illustrations, sources and a solution
    • Strobl C., Boulesteix A.-L., Zeileis A., Hothorn T. Bias in random forest variable importance measures: illustrations, sources and a solution. BMC Bioinformatics 2007, 8:25.
    • (2007) BMC Bioinformatics , vol.8 , pp. 25
    • Strobl, C.1    Boulesteix, A.-L.2    Zeileis, A.3    Hothorn, T.4
  • 48
    • 84875809963 scopus 로고    scopus 로고
    • Impact of grapes heterogeneity according to sugar level on both physical and mechanical berries properties and their anthocyanins extractability at harvest
    • Zouid I., Siret R., Jourjon F., Mehinagic E., Rolle L. Impact of grapes heterogeneity according to sugar level on both physical and mechanical berries properties and their anthocyanins extractability at harvest. J. Texture Stud. 2013, 44:95-103.
    • (2013) J. Texture Stud. , vol.44 , pp. 95-103
    • Zouid, I.1    Siret, R.2    Jourjon, F.3    Mehinagic, E.4    Rolle, L.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.