-
2
-
-
35949018382
-
Ergodic theory of chaos and strange attractors
-
J.-P. Eckmann and D. Ruelle, “Ergodic theory of chaos and strange attractors,” Rev. Mod. Phys., vol. 57, no. 3, July 1985
-
(1985)
Rev. Mod. Phys.
, vol.57
, Issue.3
-
-
Eckmann, J.-P.1
Ruelle, D.2
-
3
-
-
0003779190
-
-
New York, NY: Academic Press
-
M. W. Hirsch and S. Smale, Differential Equations, Dynamical Systems, and Linear Algebra. New York, NY: Academic Press, 1974
-
(1974)
Differential Equations, Dynamical Systems, and Linear Algebra
-
-
Hirsch, M.W.1
Smale, S.2
-
4
-
-
34250112778
-
On the concept of attractor
-
J. Milnor, “On the concept of attractor,” Commun. Math. Phys., vol. 99, pp. 177–195, 1985
-
(1985)
Commun. Math. Phys.
, vol.99
, pp. 177-195
-
-
Milnor, J.1
-
5
-
-
0022683378
-
On the state equations of nonlinear networks and the uniqueness of their solutions
-
Mar
-
M. Koksal, “On the state equations of nonlinear networks and the uniqueness of their solutions,” Proc. IEEE, vol. 74, pp. 513–514, Mar. 1986
-
(1986)
Proc. IEEE
, vol.74
, pp. 513-514
-
-
Koksal, M.1
-
7
-
-
0003478288
-
-
New York, NY: Springer-Verlag
-
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. New York, NY: Springer-Verlag, 1983, pp. 230–235
-
(1983)
Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields
, pp. 230-235
-
-
Guckenheimer, J.1
Holmes, P.2
-
10
-
-
0003003083
-
At least one Lyapunov exponent vanishes if the trajectory of an attractor does not contain a fixed point
-
Feb
-
H. Haken, “At least one Lyapunov exponent vanishes if the trajectory of an attractor does not contain a fixed point,” Phys. Lett., vol. 94A, no. 2, pp. 71–72, Feb. 1983
-
(1983)
Phys. Lett.
, vol.94 A
, Issue.2
, pp. 71-72
-
-
Haken, H.1
-
11
-
-
0000548789
-
An equation for hyperchaos
-
O. E. Rossler, “An equation for hyperchaos,” Phys. Lett., vol. 71A, p. 155, 1979
-
(1979)
Phys. Lett.
, vol.71 A
, pp. 155
-
-
Rossler, O.E.1
-
12
-
-
0020802455
-
Entropy, Lyapunov exponents, and Hausdorff dimension in differentiable dynamic systems
-
Aug
-
L. S. Young, “Entropy, Lyapunov exponents, and Hausdorff dimension in differentiable dynamic systems,” IEEE Trans. Circuits Syst., vol. CAS-30, no. 8, pp. 599–607, Aug. 1983
-
(1983)
IEEE Trans. Circuits Syst.
, vol.CAS-30
, Issue.8
, pp. 599-607
-
-
Young, L.S.1
-
13
-
-
48749146954
-
The Liapunov dimension of strange attractors
-
P. Frederickson, J. L. Kaplan, E. D. Yorke, and J. A. Yorke, “The Liapunov dimension of strange attractors,” J. Diff. Eq., vol. 49, pp. 185-207,1983
-
(1983)
J. Diff. Eq.
, vol.49
, pp. 185-207
-
-
Frederickson, P.1
Kaplan, J.L.2
Yorke, E.D.3
Yorke, J.A.4
-
14
-
-
40749093037
-
Measuring the strangeness of strange attractors
-
P. Grassberger and I. Procaccia, “Measuring the strangeness of strange attractors,” Physica 9D, pp. 189–208, 1983
-
(1983)
Physica 9D
, pp. 189-208
-
-
Grassberger, P.1
Procaccia, I.2
-
15
-
-
0000779360
-
Detecting strange attractors in turbulence
-
Berlin, W. Germany: Springer
-
F. Takens, “Detecting strange attractors in turbulence,” in Warwick 1980 Lecture Notes in Math., vol. 898. Berlin, W. Germany: Springer, pp. 366–381
-
Warwick 1980 Lecture Notes in Math.
, vol.898
, pp. 366-381
-
-
Takens, F.1
-
16
-
-
0001200939
-
INSITE—A software toolkit for the analysis of nonlinear systems
-
the issue
-
T. S. Parker and L. O. Chua, “INSITE—A software toolkit for the analysis of nonlinear systems,” this issue, pp. 1081–1089
-
-
-
Parker, T.S.1
Chua, L.O.2
-
17
-
-
0003555195
-
-
Philadelphia, PA: SIAM
-
j. j. Dongarra, C. B. Moler, J. R. Bunch, and G. W. Stewart, LIN PACK Users’ Guide. Philadelphia, PA: SIAM, 1979
-
(1979)
LINPACK Users' Guide
-
-
Dongarra, J.1
Moler, C.B.2
Bunch, J.R.3
Stewart, G.W.4
-
19
-
-
84913374297
-
Matrix eigensystem routines—EISPACK guide, second edition
-
New York, NY: Springer-Verlag
-
B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C. Klema, and C. B. Moler, “Matrix eigensystem routines—EISPACK guide, second edition,” in Lecture Notes in Computer Science. New York, NY: Springer-Verlag, 1976
-
(1976)
Lecture Notes in Computer Science
-
-
Smith, B.T.1
Boyle, J.M.2
Dongarra, J.J.3
Garbow, B.S.4
Ikebe, Y.5
Klema, V.C.6
Moler, C.B.7
-
20
-
-
0015373005
-
A computer algorithm to determine the steady-state response of nonlinear oscillators
-
July
-
T. J. Aprille and T. N. Trick, “A computer algorithm to determine the steady-state response of nonlinear oscillators,” IEEE Trans. Circuits Syst., vol. CAS-4, pp. 354–360, July 1972
-
(1972)
IEEE Trans. Circuits Syst.
, vol.CAS-4
, pp. 354-360
-
-
Aprille, T.J.1
Trick, T.N.2
-
22
-
-
0010002412
-
Numerical computation of invariant circles of maps
-
I. G. Kevrekidis, R. Aris, L. D. Schmidt, and S. Pelikan, “Numerical computation of invariant circles of maps,” Physica 16D, pp. 243-251,1985
-
(1985)
Physica 16D
, pp. 243-251
-
-
Kevrekidis, I.G.1
Aris, R.2
Schmidt, L.D.3
Pelikan, S.4
-
23
-
-
0021486178
-
Frequency-domain analysis of nonlinear circuits driven by multi-tone signals
-
Sept
-
A. Ushida and L. O. Chua, “Frequency-domain analysis of nonlinear circuits driven by multi-tone signals,” IEEE Trans. Circuits Syst., vol. CAS-31, no. 9, pp. 766–779, Sept. 1984
-
(1984)
IEEE Trans. Circuits Syst.
, vol.CAS-31
, Issue.9
, pp. 766-779
-
-
Ushida, A.1
Chua, L.O.2
-
24
-
-
0021224909
-
Determining Lyapunov exponents from a time series
-
A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, “Determining Lyapunov exponents from a time series,” Physica 16D, pp. 285–317, 1985
-
(1985)
Physica 16D
, pp. 285-317
-
-
Wolf, A.1
Swift, J.B.2
Swinney, H.L.3
Vastano, J.A.4
-
25
-
-
0000672504
-
A numerical approach to ergodic problem of dissipative dynamical systems
-
June
-
I. Shimada and T. Nagashima, “A numerical approach to ergodic problem of dissipative dynamical systems,” Prog. Theor. Phys., vol. 61, no. 6, pp. 1605–1616, June 1979
-
(1979)
Prog. Theor. Phys.
, vol.61
, Issue.6
, pp. 1605-1616
-
-
Shimada, I.1
Nagashima, T.2
-
27
-
-
0002157660
-
A scaling law: How an attractor's volume depends on noise level
-
E. Ott, E. D. Yorke, and J. A. Yorke, “A scaling law: How an attractor's volume depends on noise level,” Physica 16D, pp. 62–78, 1985
-
(1985)
Physica 16D
, pp. 62-78
-
-
Ott, E.1
Yorke, E.D.2
Yorke, J.A.3
-
28
-
-
0004088074
-
Efficient algorithms for computing fractal dimensions
-
G.Mayer-Kress, Ed. New York, NY: Springer-Verlag
-
F. Hunt and F. Sullivan, “Efficient algorithms for computing fractal dimensions,” in Dimensions and Entropies in Chaotic Systems, G. Mayer-Kress, Ed. New York, NY: Springer-Verlag, 1986
-
(1986)
Dimensions and Entropies in Chaotic Systems
-
-
Hunt, F.1
Sullivan, F.2
-
29
-
-
0018295624
-
An intrinsic dimensionality estimator from near-neighbor information
-
Jan
-
K. W. Pettis, T. A. Bailey, A. K. Jain, and R. C. Dubes, “An intrinsic dimensionality estimator from near-neighbor information,” IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-1, no. 1, pp. 25–37, Jan. 1979
-
(1979)
IEEE Trans. Pattern Anal. Machine Intell.
, vol.PAMI-1
, Issue.1
, pp. 25-37
-
-
Pettis, K.W.1
Bailey, T.A.2
Jain, A.K.3
Dubes, R.C.4
-
30
-
-
0000263797
-
Projection pursuit
-
P. J. Huber, “Projection pursuit,” Ann. Statist., vol. 13, pp. 435-475,1985
-
(1985)
Ann. Statist.
, vol.13
, pp. 435-475
-
-
Huber, P.J.1
-
31
-
-
0008098372
-
Methods for estimating the intrinsic dimensionality of high-dimensional point sets
-
G. Mayer-Kress, Ed. New York, NY: Springer-Verlag
-
R. L. Somorjai, “Methods for estimating the intrinsic dimensionality of high-dimensional point sets,” in Dimensions and Entropies in Chaotic Systems, G. Mayer-Kress, Ed. New York, NY: Springer-Verlag, 1986
-
(1986)
Dimensions and Entropies in Chaotic Systems
-
-
Somorjai, R.L.1
|