메뉴 건너뛰기




Volumn 26, Issue 9, 2015, Pages 2561-2570

Parallel Architectures for Learning the RTRN and Elman Dynamic Neural Networks

Author keywords

Parallel architectures; recurrent neural networks; supervised learning

Indexed keywords

ARCHITECTURE; COMPLEX NETWORKS; LEARNING SYSTEMS; MEMORY ARCHITECTURE; NETWORK ARCHITECTURE; NEURAL NETWORKS; RECURRENT NEURAL NETWORKS; SUPERVISED LEARNING;

EID: 84939220433     PISSN: 10459219     EISSN: None     Source Type: Journal    
DOI: 10.1109/TPDS.2014.2357019     Document Type: Article
Times cited : (41)

References (28)
  • 4
    • 80052951147 scopus 로고    scopus 로고
    • New trends in neurocybernetics
    • R. Tadeusiewicz, "New Trends in Neurocybernetics," Comput. Methods Materials Sci., vol. 10, no. 1, pp. 1-7, 2010.
    • (2010) Comput. Methods Materials Sci. , vol.10 , Issue.1 , pp. 1-7
    • Tadeusiewicz, R.1
  • 6
    • 0034207989 scopus 로고    scopus 로고
    • VLSI implementation of neural networks
    • Jun.
    • B. M. Wilamowski, J. Bifnet, and M. O. Kaynak, "VLSI implementation of neural networks," Int. J. Neural Syst., vol. 10, no. 3, pp. 191-197, Jun. 2000.
    • (2000) Int. J. Neural Syst. , vol.10 , Issue.3 , pp. 191-197
    • Wilamowski, B.M.1    Bifnet, J.2    Kaynak, M.O.3
  • 8
    • 1542786199 scopus 로고    scopus 로고
    • Artificial neural networks on massively parallel computer hardware
    • U. Seiffert, "Artificial neural networks on massively parallel computer hardware," Neurocomputing, vol. 57, pp. 135-150, 2004.
    • (2004) Neurocomputing , vol.57 , pp. 135-150
    • Seiffert, U.1
  • 9
    • 35748936475 scopus 로고    scopus 로고
    • Graph theoretical representation of ANN architectures on regular two-dimensional grids for VLSI implementations
    • S. C. Stilkerich, "Graph theoretical representation of ANN architectures on regular two-dimensional grids for VLSI implementations," Neurocomputing, vol. 71, pp. 45-70, 2007.
    • (2007) Neurocomputing , vol.71 , pp. 45-70
    • Stilkerich, S.C.1
  • 10
    • 0025503558 scopus 로고
    • Backpropagation through time: What it does and how to do it
    • Oct.
    • J. Werbos, "Backpropagation through time: What it does and how to do it," Proc. IEEE, vol. 78, no. 10, pp. 1550-1560, Oct. 1990.
    • (1990) Proc. IEEE , vol.78 , Issue.10 , pp. 1550-1560
    • Werbos, J.1
  • 11
    • 0025488663 scopus 로고
    • 30 years of adaptive neural networks: Perceptron, madaline, and backpropagation
    • Sep.
    • B. Widrow and M. Lehr, "30 years of adaptive neural networks: perceptron, madaline, and backpropagation," Proc. IEEE, vol. 78, no. 9, pp. 1415-1442, Sep. 1990.
    • (1990) Proc. IEEE , vol.78 , Issue.9 , pp. 1415-1442
    • Widrow, B.1    Lehr, M.2
  • 13
    • 78149358747 scopus 로고    scopus 로고
    • Neural network learning without backpropagation
    • Nov.
    • B. Wilamowski and H. Yu, "Neural network learning without backpropagation," IEEE Trans. Neural Netw., vol. 21, no. 11, pp. 1793-1803, Nov. 2010.
    • (2010) IEEE Trans. Neural Netw. , vol.21 , Issue.11 , pp. 1793-1803
    • Wilamowski, B.1    Yu, H.2
  • 16
    • 84861027796 scopus 로고    scopus 로고
    • Optimal training strategies for locally recurrent neural networks
    • K. Patan and M. Patan, "Optimal Training Strategies for Locally Recurrent Neural Networks," J. Artificial Intell. Soft Comput. Research, vol. 1, no. 2, pp. 103-114, 2011.
    • (2011) J. Artificial Intell. Soft Comput. Research , vol.1 , Issue.2 , pp. 103-114
    • Patan, K.1    Patan, M.2
  • 19
    • 0001414608 scopus 로고    scopus 로고
    • Generalization of backpropagation to recurrent anf higher order neural networks
    • New York, NY, USA
    • F. J. Pineda, "Generalization of backpropagation to recurrent anf higher order neural networks," in presented at the Neural Information Processing Systems. New York, NY, USA, pp. 602-611.
    • Presented at the Neural Information Processing Systems , pp. 602-611
    • Pineda, F.J.1
  • 21
    • 26444565569 scopus 로고
    • Finding structure in time
    • J. Elman, "Finding structure in time," Cognitive Sci., vol. 14, pp. 179-211, 1990.
    • (1990) Cognitive Sci. , vol.14 , pp. 179-211
    • Elman, J.1
  • 22
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent
    • R. Williams and D. Zipser, "A learning algorithm for continually running fully recurrent," Neural Comput., vol. 1, pp. 270-280, 1989.
    • (1989) Neural Comput. , vol.1 , pp. 270-280
    • Williams, R.1    Zipser, D.2
  • 23
    • 48349105296 scopus 로고    scopus 로고
    • Parallel realisation of the recurrent RTRN neural network learning
    • J. Bilski and J. Smolag, "Parallel realisation of the recurrent RTRN neural network learning," in Proc. 9th Int. Conf. Artif. Intell. Soft Comput., 2008, no. 5097, pp. 11-16.
    • (2008) Proc. 9th Int. Conf. Artif. Intell. Soft Comput. , Issue.5097 , pp. 11-16
    • Bilski, J.1    Smolag, J.2
  • 24
    • 77955439236 scopus 로고    scopus 로고
    • Parallel realisation of the recurrent Elman neural network learning
    • J. Bilski and J. Smoląg, "Parallel realisation of the recurrent Elman neural network learning," in Proc. 10th Int. Conf. Artif. Intell. Softw. Comput., 2010, no. 6114, pp. 19-25.
    • (2010) Proc. 10th Int. Conf. Artif. Intell. Softw. Comput. , Issue.6114 , pp. 19-25
    • Bilski, J.1    Smoląg, J.2
  • 26
    • 35748941248 scopus 로고    scopus 로고
    • A high bit resolution FPGA implementation of a FNN with a new algorithm for the activation function
    • P. Ferreira, P. Ribeiro, A. Antunesi, and F. M. Dias, "A high bit resolution FPGA implementation of a FNN with a new algorithm for the activation function," Neurocomputing, vol. 71, pp. 71-77, 2007.
    • (2007) Neurocomputing , vol.71 , pp. 71-77
    • Ferreira, P.1    Ribeiro, P.2    Antunesi, A.3    Dias, F.M.4
  • 27
    • 28344446251 scopus 로고    scopus 로고
    • Simultaneous perturbation learning rule for recurrent neural networks and its FPGA implementation
    • Nov.
    • Y. Maeda and M. Wakamura, "Simultaneous perturbation learning rule for recurrent neural networks and its FPGA implementation," IEEE Trans. Neural Netw., vol. 16, no. 6, pp. 1664-1672, Nov. 2005.
    • (2005) IEEE Trans. Neural Netw. , vol.16 , Issue.6 , pp. 1664-1672
    • Maeda, Y.1    Wakamura, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.