메뉴 건너뛰기




Volumn 22, Issue 4, 2015, Pages 336-365

Optimal Execution and Block Trade Pricing: A General Framework

Author keywords

block trade pricing; Hamilton Jacobi equations; Optimal execution; viscosity solutions

Indexed keywords


EID: 84939001104     PISSN: 1350486X     EISSN: 14664313     Source Type: Journal    
DOI: 10.1080/1350486X.2015.1042188     Document Type: Article
Times cited : (24)

References (24)
  • 1
    • 0345060535 scopus 로고    scopus 로고
    • Optimal Execution with Nonlinear Impact Functions and Trading-Enhanced Risk
    • R.Almgren, 2003. “Optimal Execution with Nonlinear Impact Functions and Trading-Enhanced Risk.” Applied Mathematical Finance 10 (1): 1–18. doi:10.1080/135048602100056.
    • (2003) Applied Mathematical Finance , vol.10 , Issue.1 , pp. 1-18
    • Almgren, R.1
  • 2
    • 84866306091 scopus 로고    scopus 로고
    • Optimal Trading with Stochastic Liquidity and Volatility
    • R.Almgren, 2012. “Optimal Trading with Stochastic Liquidity and Volatility.” SIAM Journal on Financial Mathematics 3 (1): 163–181. doi:10.1137/090763470.
    • (2012) SIAM Journal on Financial Mathematics , vol.3 , Issue.1 , pp. 163-181
    • Almgren, R.1
  • 3
    • 0344354032 scopus 로고    scopus 로고
    • Value under Liquidation
    • R.Almgren,, and N.Chriss. 1999. “Value under Liquidation.” Risk 12 (12): 61–63.
    • (1999) Risk , vol.12 , Issue.12 , pp. 61-63
    • Almgren, R.1    Chriss, N.2
  • 4
    • 0344354031 scopus 로고    scopus 로고
    • Optimal Execution of Portfolio Transactions
    • R.Almgren,, and N.Chriss. 2001. “Optimal Execution of Portfolio Transactions.” Journal of Risk 3: 5–40.
    • (2001) Journal of Risk , vol.3 , pp. 5-40
    • Almgren, R.1    Chriss, N.2
  • 5
    • 77957910248 scopus 로고    scopus 로고
    • Adaptive Arrival Price
    • R.Almgren,, and J.Lorenz. 2007. “Adaptive Arrival Price.” Journal of Trading 2007 (1): 59–66.
    • (2007) Journal of Trading , vol.2007 , Issue.1 , pp. 59-66
    • Almgren, R.1    Lorenz, J.2
  • 6
    • 84925332197 scopus 로고    scopus 로고
    • Liquidation in Limit Order Books with Controlled Intensity
    • E.Bayraktar,, and M.Ludkovski. 2012. “Liquidation in Limit Order Books with Controlled Intensity.” Mathematical Finance 24 (4): 627–650.
    • (2012) Mathematical Finance , vol.24 , Issue.4 , pp. 627-650
    • Bayraktar, E.1    Ludkovski, M.2
  • 7
    • 0002267373 scopus 로고    scopus 로고
    • Optimal Control of Execution Costs
    • D.Bertsimas,, and A.Lo. 1998. “Optimal Control of Execution Costs.” Journal of Financial Markets 1 (1): 1–50. doi:10.1016/S1386-4181(97)00012-8.
    • (1998) Journal of Financial Markets , vol.1 , Issue.1 , pp. 1-50
    • Bertsimas, D.1    Lo, A.2
  • 8
    • 78649679204 scopus 로고    scopus 로고
    • A Hamilton–Jacobi–Bellman Approach to Optimal Trade Execution
    • P.A.Forsyth, 2011. “A Hamilton–Jacobi–Bellman Approach to Optimal Trade Execution.” Applied Numerical Mathematics 61 (2): 241–265. doi:10.1016/j.apnum.2010.10.004.
    • (2011) Applied Numerical Mathematics , vol.61 , Issue.2 , pp. 241-265
    • Forsyth, P.A.1
  • 12
    • 84930381214 scopus 로고    scopus 로고
    • General Intensity Shapes in Optimal Liquidation
    • O.Guéant,, and C.-A.Lehalle. 2013. “General Intensity Shapes in Optimal Liquidation.” Mathematical Finance. doi:10.1111/mafi.12052.
    • (2013) Mathematical Finance
    • Guéant, O.1    Lehalle, C.-A.2
  • 16
    • 84930382360 scopus 로고    scopus 로고
    • Portfolio Liquidation in Dark Pools in Continuous Time
    • P.Kratz,, and T.Schöneborn. 2013. “Portfolio Liquidation in Dark Pools in Continuous Time.” Mathematical Finance. doi:10.1111/mafi.12037.
    • (2013) Mathematical Finance
    • Kratz, P.1    Schöneborn, T.2
  • 17
    • 84967372692 scopus 로고    scopus 로고
    • World Scientific
    • C.-A.Lehalle,, and S.Laruelle. 2014. Market Microstructure in Practice. World Scientific. http://www.amazon.com/Market-Microstructure-Practice-Charles-Albert-Lehalle/dp/9814566160/ref=sr_1_1?ie=UTF8&qid=1430661080&sr=8-1&keywords=Market+Microstructure+in+Practice
    • (2014) Market Microstructure in Practice
    • Lehalle, C.-A.1    Laruelle, S.2
  • 18
    • 84859012704 scopus 로고    scopus 로고
    • Mean-Variance Optimal Adaptive Execution
    • J.Lorenz,, and R.Almgren. 2011. “Mean-Variance Optimal Adaptive Execution.” Applied Mathematical Finance 18 (5): 395–422. doi:10.1080/1350486X.2011.560707.
    • (2011) Applied Mathematical Finance , vol.18 , Issue.5 , pp. 395-422
    • Lorenz, J.1    Almgren, R.2
  • 20
    • 0014863723 scopus 로고
    • Conjugate Convex Functions in Optimal Control and the Calculus of Variations
    • R.T.Rockafellar, 1970. “Conjugate Convex Functions in Optimal Control and the Calculus of Variations.” Journal of MathematicalAnalysis and Applications 32: 174–222. doi:10.1016/0022-247X(70)90324-0.
    • (1970) Journal of MathematicalAnalysis and Applications , vol.32 , pp. 174-222
    • Rockafellar, R.T.1
  • 21
    • 0004267646 scopus 로고    scopus 로고
    • Princeton, NJ: Princeton University Press
    • R.T.Rockafellar, 1996. Convex Analysis. Vol. 28. Princeton, NJ: Princeton University Press.
    • (1996) Convex Analysis , vol.28
    • Rockafellar, R.T.1
  • 22
    • 67349091011 scopus 로고    scopus 로고
    • Risk Aversion and the Dynamics of Optimal Liquidation Strategies in Illiquid Markets
    • A.Schied,, and T.Schöneborn. 2009. “Risk Aversion and the Dynamics of Optimal Liquidation Strategies in Illiquid Markets.” Finance and Stochastics 13 (2): 181–204. doi:10.1007/s00780-008-0082-8.
    • (2009) Finance and Stochastics , vol.13 , Issue.2 , pp. 181-204
    • Schied, A.1    Schöneborn, T.2
  • 23
    • 77958601368 scopus 로고    scopus 로고
    • Optimal Basket Liquidation for Cara Investors Is Deterministic
    • A.Schied,, T.Schöneborn, and M.Tehranchi. 2010. “Optimal Basket Liquidation for Cara Investors Is Deterministic.” Applied Mathematical Finance 17 (6): 471–489. doi:10.1080/13504860903565050.
    • (2010) Applied Mathematical Finance , vol.17 , Issue.6 , pp. 471-489
    • Schied, A.1    Schöneborn, T.2    Tehranchi, M.3
  • 24
    • 84886388638 scopus 로고    scopus 로고
    • Comparison between the Mean Variance Optimal and the Mean Quadratic Variation Optimal Trading Strategies
    • S.T.Tse,, P.A.Forsyth, J.S.Kennedy, and H.Windcliff. 2013. “Comparison between the Mean Variance Optimal and the Mean Quadratic Variation Optimal Trading Strategies.” Applied Mathematical Finance 20 (5): 415–449. doi:10.1080/1350486X.2012.755817.
    • (2013) Applied Mathematical Finance , vol.20 , Issue.5 , pp. 415-449
    • Tse, S.T.1    Forsyth, P.A.2    Kennedy, J.S.3    Windcliff, H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.