-
1
-
-
0345060535
-
Optimal Execution with Nonlinear Impact Functions and Trading-Enhanced Risk
-
R.Almgren, 2003. “Optimal Execution with Nonlinear Impact Functions and Trading-Enhanced Risk.” Applied Mathematical Finance 10 (1): 1–18. doi:10.1080/135048602100056.
-
(2003)
Applied Mathematical Finance
, vol.10
, Issue.1
, pp. 1-18
-
-
Almgren, R.1
-
2
-
-
84866306091
-
Optimal Trading with Stochastic Liquidity and Volatility
-
R.Almgren, 2012. “Optimal Trading with Stochastic Liquidity and Volatility.” SIAM Journal on Financial Mathematics 3 (1): 163–181. doi:10.1137/090763470.
-
(2012)
SIAM Journal on Financial Mathematics
, vol.3
, Issue.1
, pp. 163-181
-
-
Almgren, R.1
-
3
-
-
0344354032
-
Value under Liquidation
-
R.Almgren,, and N.Chriss. 1999. “Value under Liquidation.” Risk 12 (12): 61–63.
-
(1999)
Risk
, vol.12
, Issue.12
, pp. 61-63
-
-
Almgren, R.1
Chriss, N.2
-
4
-
-
0344354031
-
Optimal Execution of Portfolio Transactions
-
R.Almgren,, and N.Chriss. 2001. “Optimal Execution of Portfolio Transactions.” Journal of Risk 3: 5–40.
-
(2001)
Journal of Risk
, vol.3
, pp. 5-40
-
-
Almgren, R.1
Chriss, N.2
-
5
-
-
77957910248
-
Adaptive Arrival Price
-
R.Almgren,, and J.Lorenz. 2007. “Adaptive Arrival Price.” Journal of Trading 2007 (1): 59–66.
-
(2007)
Journal of Trading
, vol.2007
, Issue.1
, pp. 59-66
-
-
Almgren, R.1
Lorenz, J.2
-
6
-
-
84925332197
-
Liquidation in Limit Order Books with Controlled Intensity
-
E.Bayraktar,, and M.Ludkovski. 2012. “Liquidation in Limit Order Books with Controlled Intensity.” Mathematical Finance 24 (4): 627–650.
-
(2012)
Mathematical Finance
, vol.24
, Issue.4
, pp. 627-650
-
-
Bayraktar, E.1
Ludkovski, M.2
-
7
-
-
0002267373
-
Optimal Control of Execution Costs
-
D.Bertsimas,, and A.Lo. 1998. “Optimal Control of Execution Costs.” Journal of Financial Markets 1 (1): 1–50. doi:10.1016/S1386-4181(97)00012-8.
-
(1998)
Journal of Financial Markets
, vol.1
, Issue.1
, pp. 1-50
-
-
Bertsimas, D.1
Lo, A.2
-
8
-
-
78649679204
-
A Hamilton–Jacobi–Bellman Approach to Optimal Trade Execution
-
P.A.Forsyth, 2011. “A Hamilton–Jacobi–Bellman Approach to Optimal Trade Execution.” Applied Numerical Mathematics 61 (2): 241–265. doi:10.1016/j.apnum.2010.10.004.
-
(2011)
Applied Numerical Mathematics
, vol.61
, Issue.2
, pp. 241-265
-
-
Forsyth, P.A.1
-
9
-
-
84866279602
-
Optimal Trade Execution: A Mean Quadratic Variation Approach
-
P.A.Forsyth,, J.S.Kennedy, S.T.Tse, and H.Windcliff. 2009. “Optimal Trade Execution: A Mean Quadratic Variation Approach.” Journal of Economic Dynamics and Control 36 (12): 1971–1991.
-
(2009)
Journal of Economic Dynamics and Control
, vol.36
, Issue.12
, pp. 1971-1991
-
-
Forsyth, P.A.1
Kennedy, J.S.2
Tse, S.T.3
Windcliff, H.4
-
12
-
-
84930381214
-
General Intensity Shapes in Optimal Liquidation
-
O.Guéant,, and C.-A.Lehalle. 2013. “General Intensity Shapes in Optimal Liquidation.” Mathematical Finance. doi:10.1111/mafi.12052.
-
(2013)
Mathematical Finance
-
-
Guéant, O.1
Lehalle, C.-A.2
-
16
-
-
84930382360
-
Portfolio Liquidation in Dark Pools in Continuous Time
-
P.Kratz,, and T.Schöneborn. 2013. “Portfolio Liquidation in Dark Pools in Continuous Time.” Mathematical Finance. doi:10.1111/mafi.12037.
-
(2013)
Mathematical Finance
-
-
Kratz, P.1
Schöneborn, T.2
-
17
-
-
84967372692
-
-
World Scientific
-
C.-A.Lehalle,, and S.Laruelle. 2014. Market Microstructure in Practice. World Scientific. http://www.amazon.com/Market-Microstructure-Practice-Charles-Albert-Lehalle/dp/9814566160/ref=sr_1_1?ie=UTF8&qid=1430661080&sr=8-1&keywords=Market+Microstructure+in+Practice
-
(2014)
Market Microstructure in Practice
-
-
Lehalle, C.-A.1
Laruelle, S.2
-
18
-
-
84859012704
-
Mean-Variance Optimal Adaptive Execution
-
J.Lorenz,, and R.Almgren. 2011. “Mean-Variance Optimal Adaptive Execution.” Applied Mathematical Finance 18 (5): 395–422. doi:10.1080/1350486X.2011.560707.
-
(2011)
Applied Mathematical Finance
, vol.18
, Issue.5
, pp. 395-422
-
-
Lorenz, J.1
Almgren, R.2
-
20
-
-
0014863723
-
Conjugate Convex Functions in Optimal Control and the Calculus of Variations
-
R.T.Rockafellar, 1970. “Conjugate Convex Functions in Optimal Control and the Calculus of Variations.” Journal of MathematicalAnalysis and Applications 32: 174–222. doi:10.1016/0022-247X(70)90324-0.
-
(1970)
Journal of MathematicalAnalysis and Applications
, vol.32
, pp. 174-222
-
-
Rockafellar, R.T.1
-
21
-
-
0004267646
-
-
Princeton, NJ: Princeton University Press
-
R.T.Rockafellar, 1996. Convex Analysis. Vol. 28. Princeton, NJ: Princeton University Press.
-
(1996)
Convex Analysis
, vol.28
-
-
Rockafellar, R.T.1
-
22
-
-
67349091011
-
Risk Aversion and the Dynamics of Optimal Liquidation Strategies in Illiquid Markets
-
A.Schied,, and T.Schöneborn. 2009. “Risk Aversion and the Dynamics of Optimal Liquidation Strategies in Illiquid Markets.” Finance and Stochastics 13 (2): 181–204. doi:10.1007/s00780-008-0082-8.
-
(2009)
Finance and Stochastics
, vol.13
, Issue.2
, pp. 181-204
-
-
Schied, A.1
Schöneborn, T.2
-
23
-
-
77958601368
-
Optimal Basket Liquidation for Cara Investors Is Deterministic
-
A.Schied,, T.Schöneborn, and M.Tehranchi. 2010. “Optimal Basket Liquidation for Cara Investors Is Deterministic.” Applied Mathematical Finance 17 (6): 471–489. doi:10.1080/13504860903565050.
-
(2010)
Applied Mathematical Finance
, vol.17
, Issue.6
, pp. 471-489
-
-
Schied, A.1
Schöneborn, T.2
Tehranchi, M.3
-
24
-
-
84886388638
-
Comparison between the Mean Variance Optimal and the Mean Quadratic Variation Optimal Trading Strategies
-
S.T.Tse,, P.A.Forsyth, J.S.Kennedy, and H.Windcliff. 2013. “Comparison between the Mean Variance Optimal and the Mean Quadratic Variation Optimal Trading Strategies.” Applied Mathematical Finance 20 (5): 415–449. doi:10.1080/1350486X.2012.755817.
-
(2013)
Applied Mathematical Finance
, vol.20
, Issue.5
, pp. 415-449
-
-
Tse, S.T.1
Forsyth, P.A.2
Kennedy, J.S.3
Windcliff, H.4
|